单源最短路径-Dijkstra算法

 算法说明

迪杰斯特拉算法解决的事带权重的有向图上单源最短路径问题,该算法要求所有边的权重都为非负值。他在运行过程中维护的关键信息是一组节点集合S。算法重复从节点集V-S中选择最短路径估计最小的节点u,将u加入到集合S中,然后对所有从u发出的边进行松弛。

我们使用最小优先队列Q来保存节点集合,每个节点的关键值为其d值。

算法步骤

G={V,E}
1. 初始时令 S={V0},T=V-S={其余顶点},T中顶点对应的距离值
若存在<V0,Vi>,d(V0,Vi)为<V0,Vi>弧上的权值
若不存在<V0,Vi>,d(V0,Vi)为∞
2. 在(T)未确定的点中选取当前以得的最短路径(与S中顶点有关联边且权值最小)
3. 对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值缩短,则修改此距离值
4.重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

算法举例





实现代码

/***补充于3月14号**/
#include "stdio.h"    
#include "stdlib.h"   
#include "io.h"  
#include "math.h"  
#include "time.h"


#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0


#define MAXEDGE 20
#define MAXVEX 20
#define INFINITY 65535


typedef int Status;	/* Status是函数的类型,其值是函数结果状态代码,如OK等 */ 




typedef struct
{
	int vexs[MAXVEX];
	int arc[MAXVEX][MAXVEX];
	int numVertexes, numEdges;
}MGraph;


typedef int Patharc[MAXVEX];    /* 用于存储最短路径下标的数组 */
typedef int ShortPathTable[MAXVEX];/* 用于存储到各点最短路径的权值和 */


/* 构件图 */
void CreateMGraph(MGraph *G)
{
	int i, j;


	/* printf("请输入边数和顶点数:"); */
	G->numEdges=16;
	G->numVertexes=9;


	for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
	{
		G->vexs[i]=i;
	}


	for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
	{
		for ( j = 0; j < G->numVertexes; j++)
		{
			if (i==j)
				G->arc[i][j]=0;
			else
				G->arc[i][j] = G->arc[j][i] = INFINITY;
		}
	}


	G->arc[0][1]=1;
	G->arc[0][2]=5; 
	G->arc[1][2]=3; 
	G->arc[1][3]=7; 
	G->arc[1][4]=5; 


	G->arc[2][4]=1; 
	G->arc[2][5]=7; 
	G->arc[3][4]=2; 
	G->arc[3][6]=3; 
	G->arc[4][5]=3;


	G->arc[4][6]=6;
	G->arc[4][7]=9; 
	G->arc[5][7]=5; 
	G->arc[6][7]=2; 
	G->arc[6][8]=7;


	G->arc[7][8]=4;




	for(i = 0; i < G->numVertexes; i++)
	{
		for(j = i; j < G->numVertexes; j++)
		{
			G->arc[j][i] =G->arc[i][j];
		}
	}


}


/*  Dijkstra算法,求有向网G的v0顶点到其余顶点v的最短路径P[v]及带权长度D[v] */    
/*  P[v]的值为前驱顶点下标,D[v]表示v0到v的最短路径长度和 */  
void ShortestPath_Dijkstra(MGraph G, int v0, Patharc *P, ShortPathTable *D)
{    
	int v,w,k,min;    
	int final[MAXVEX];/* final[w]=1表示求得顶点v0至vw的最短路径 */
	for(v=0; v<G.numVertexes; v++)    /* 初始化数据 */
	{        
		final[v] = 0;			/* 全部顶点初始化为未知最短路径状态 */
		(*D)[v] = G.arc[v0][v];/* 将与v0点有连线的顶点加上权值 */
		(*P)[v] = -1;				/* 初始化路径数组P为-1  */       
	}


	(*D)[v0] = 0;  /* v0至v0路径为0 */  
	final[v0] = 1;    /* v0至v0不需要求路径 */        
	/* 开始主循环,每次求得v0到某个v顶点的最短路径 */   
	for(v=1; v<G.numVertexes; v++)   
	{
		min=INFINITY;    /* 当前所知离v0顶点的最近距离 */        
		for(w=0; w<G.numVertexes; w++) /* 寻找离v0最近的顶点 */    
		{            
			if(!final[w] && (*D)[w]<min)             
			{                   
				k=w;                    
				min = (*D)[w];    /* w顶点离v0顶点更近 */            
			}        
		}        
		final[k] = 1;    /* 将目前找到的最近的顶点置为1 */
		for(w=0; w<G.numVertexes; w++) /* 修正当前最短路径及距离 */
		{
			/* 如果经过v顶点的路径比现在这条路径的长度短的话 */
			if(!final[w] && (min+G.arc[k][w]<(*D)[w]))   
			{ /*  说明找到了更短的路径,修改D[w]和P[w] */
				(*D)[w] = min + G.arc[k][w];  /* 修改当前路径长度 */               
				(*P)[w]=k;        
			}       
		}   
	}
}


int main(void)
{   
	int i,j,v0;
	MGraph G;    
	Patharc P;    
	ShortPathTable D; /* 求某点到其余各点的最短路径 */   
	v0=0;
	
	CreateMGraph(&G);
	
	ShortestPath_Dijkstra(G, v0, &P, &D);  


	printf("最短路径倒序如下:\n");    
	for(i=1;i<G.numVertexes;++i)   
	{       
		printf("v%d - v%d : ",v0,i);
		j=i;
		while(P[j]!=-1)
		{
			printf("%d ",P[j]);
			j=P[j];
		}
		printf("\n");
	}    
	printf("\n源点到各顶点的最短路径长度为:\n");  
	for(i=1;i<G.numVertexes;++i)        
		printf("v%d - v%d : %d \n",G.vexs[0],G.vexs[i],D[i]);     
	return 0;
}


  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Dijkstra算法是一种用于解决单源最短路径问题的算法。它的基本思想是从起点开始,逐步扩展到其他节点,每次选择当前距离起点最近的节点,并更新与该节点相邻的节点的距离。通过这种方式,可以找到起点到其他节点最短路径Dijkstra算法的时间复杂度为O(n^2),但是可以通过使用堆优化来将其优化到O(nlogn)。 ### 回答2: Dijkstra算法是一种解决单源最短路径问题的贪心算法,其思想是利用“松弛”操作来不断更新当前点到源点的最短距离,但前提是所有边的权重非负。如果有负权边,则需要使用Bellman-Ford算法。 首先,我们需要定义一个数组dis数组,用于存储源点s到各个点的最短距离。dis[s]初始为0,其他点初始为无限大。接着,我们需要维护一个集合S,表示已经求出最短路径的点的集合。将源点s加入集合S。 对于每个未加入S的点v,我们通过选择其它点到源点s的最短路径的一个点u,然后将dis[v]更新为dis[u] + w(u,v),其w(u,v)表示边(u,v)的权重。具体地,这个操作称为“松弛”操作。 在松弛操作,我们需要比较dis[u] + w(u,v)和dis[v]的大小,如果前者更小,则更新dis[v]的值为dis[u] + w(u,v)。 重复执行以上操作,直到所有的点都加入集合S。最后dis数组存储的就是源点s到所有点的最短距离。 Dijkstra算法可以用堆优化,时间复杂度为O(mlogn),其n表示图的点数,m表示边数。Dijkstra算法也可以应用于稠密图,时间复杂度为O(n^2)。 总之,Dijkstra算法是一种经典的求解单源最短路径问题的算法,其实现简单,效率高,被广泛应用于路由算法和图像处理等领域。 ### 回答3: Dijkstra算法是一种在加权有向图寻找从源节点到其他节点最短路径的贪心算法。该算法基于其它路径加权节点的已知最短路径去更新更长路径的信息直到找到从源节点到目标节点最短路径。在整个计算过程Dijkstra算法需要维护一个待处理节点集合和一个距离源节点最短路径数组。 算法的具体实现如下: 1. 初始化源节点及其距离为0,其他节点的距离为无穷大。 2. 将源节点加入到待处理节点集合。 3. 对于源节点的所有相邻节点,更新它们距离源节点最短路径。如果当前路径小于之前已知的最短路径,则更新最短路径数组。 4. 遍历待处理节点集合除源节点外的节点选择距离最近的节点作为当前节点,并将它从待处理机集合移除。 5. 对于当前节点的所有相邻节点,更新它们距离源节点最短路径。如果当前路径小于之前已知的最短路径,则更新最短路径数组。 6. 重复步骤4和5,直到待处理节点集合为空或者目标节点已经被遍历。 Dijkstra算法的时间复杂度为O(n^2),其n为节点数,由于它是贪心算法,只能处理非负权重的图,否则可能会陷入死循环。但是,Dijkstra算法单源最短路径问题的最优解,因此在处理小规模的图时效果很好。在处理大规模图时,需要使用其他高效的算法,如A*算法、Bellman-Ford算法等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值