实验一 动态规划算法

该博客探讨了如何使用动态规划算法解决王者荣耀游戏中晋升段位的概率问题。通过分析比赛场次和每场比赛的胜利概率,确定了状态转移方程,并提供了计算成功晋级的概率的代码实现。算法的时间复杂度为O(n²),空间复杂度为O(n²)。
摘要由CSDN通过智能技术生成

问题描述:

小明想要在王者荣耀游戏里晋升一个段位,假设他一共需打了n场比赛,且必须成功赢得至少70%的场次才能成功晋升。假设每场比赛小明获胜的概率分别=3为p1,p2,…,pn,请帮他算出成功晋级段位的概率是多少?

输入:
参数1:整数num(0<= num <=1000),表示比赛的场数。
参数2:整数数组p[num] = {p1,p2,…,pnum},其中pi表示小明有pi%的概率赢得第i场比赛。(0 <=pi <= 100)

输出:
成功晋级段位的概率,保留小数点后5位,最后结果四舍五入。

分析

这个问题可以看作:
先求解小明进行i场比赛并且赢了j场的概率
然后再求i=num,j>=num0.7(num0.7向上取整)时的结果

运用我们刚刚学的DP四步骤:

关于DP四步骤可以看动态规划(Dynamic Programming)入门

确定状态

  1. 最后一步:在进行了i场比赛后赢了j场
  2. 子问题:当第i场输了的时候,那么在前i-1场比赛,共赢了j场;当第i场赢了的时候,那么在前i-1场比赛,共赢了j-1场.

状态:设f[i][j]表示在进行了i场比赛后赢了j场的概率

转移方程

这里要分两种情况:
当j=0时,f[i][j]=f[i-1][0]*(1-p[i])
当j>0时,f[i][j]=f[i-1][j]*(1-p[i])+f[i-1][j-1]p[i]

初始条件和边界情况

初始条件:
f[0][0]=1、f[k][k]=p1*p2…pk

计算顺序

DP的目的是利用历史记录,不重复计算,所以,我们先枚举j的情况,再枚举i的情况。

代码实现:

package algorithm;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;


public class DPSolution {
   

	public static double probability(int[] p,int num) {
   
		double pass=0.0d;//晋级的概率
	
		
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值