- 博客(74)
- 收藏
- 关注
原创 控制浏览器是否缓存网页状态
对于上下文的创建,需要先实现rt_uint8_t *rt_hw_stack_init(void *tentry, void *parameter, rt_uint8_t *stack_addr, void *texit)函数。void rt_hw_context_switch(rt_ubase_t from, rt_ubase_t to)//切换到to的上下文,又要保存当前上下文到from上。//保存上下文到from中。
2025-11-17 21:11:48
803
原创 写技术类博文,我们需要更严谨的精神--【非常抱歉我扯蛋了】
SocketWordCount是Flink中的经典示例,它通过Socket接收实时数据流,对数据流中的单词进行计数,并将结果实时输出。在SocketWordCount中,keyBy操作使用了Key Group Partitioning策略,确保相同单词的数据被发送到同一个分区进行处理。System.out.println("客户端已连接,输入要发送的数据(输入'exit'退出):");最后,调用execute方法启动作业。注意,Flink程序是惰性执行的,只有调用execute方法才会真正触发计算。
2025-11-17 21:07:44
235
原创 从 if else 到 switch case 再到抽象
System.out.printf("温度: %d, 湿度: %d%n", temperature, humidity);// 填充到64字节。if (messageReady) { // volatile读:检查新消息。// 2. 发出信号(volatile写)if (ready) { // 3. 检查信号(volatile读)// volatile写:广播发送。// load X;// 1. 修改本地内存中的副本。
2025-11-17 21:02:58
649
原创 官方表态PDC and Silverlight [原文]
本文将介绍基于 SurfaceControlViewHost 实现跨进程渲染普通 View 和 GlSurfaceView,力求用最简单的 Demo,介绍 SurfaceControlViewHost 的应用,方便读者轻松扣出核心代码应用到自己的业务中。// 创建SurfaceControlViewHost。// 将View附加到SurfaceControlViewHost。// 创建要渲染的View。
2025-11-17 20:58:33
802
原创 《C#妹妹和Objective-C阿姨对话录》()自动释放池--拆迁队的外援
帽蛋詹形虽然说是手算,但是我还是会写一点 C# 代码,避免敲坏了计算器。我和大家保证,整个手算过程中,最终的计算结果只需要用到初高中知识。推导过程会用到部分高数的知识。我尽量将用到的知识点全列举出来,本文对学渣友好,期望能够拿出纸笔和 VisualStudio 的伙伴阅读完本文能够真的理解神经网络BP传播算法是如何计算的看了一下时间,今年确实 2025 年,而不是 2015 年。在 2025 时还在聊BP 算法实在有点一言难尽。我在 10 多年前尝试写过贴近的程序,当时写的时候有一些概念没有理解,但代码是写
2025-11-17 20:53:43
471
原创 逃脱Asp.Net MVC框架/枷锁,使用Razor视图引擎
GC暂停时间:DATAS通过调整第0代(gen0)的分配预算来控制GC频率和暂停时间,目标是通过维持一个合理的吞吐量成本百分比(TCP, Throughput Cost Percentage)来优化性能。设计目标:DATAS旨在根据应用程序的实际大小动态调整堆大小,特别适用于内存受限环境下的突发性工作负载和小型工作负载使用Server GC的场景。突发性工作负载:在内存受限的环境中,DATAS能在工作负载减轻时收缩堆大小,在工作负载增加时扩展堆大小。没有使用释放内存需求的场景(如运行在专用机器上的进程)。
2025-11-16 15:36:17
357
原创 Socket通信中的多进程编程实例
在多年的研发生涯里,对调参这个事深恶痛绝,为什么辛辛苦苦架构出来的模型,一训练就崩,训练收敛慢到龟速,这严重影响了开发进度,并且增加了很多不可抗力的消耗。换句话说,朴素SGD是一个没有应用任何先验补充的野蛮人,较于Adam的平滑学习而言,它就像一只无头苍蝇,到处乱撞,也不知道该撞多少次才能收敛至最小值。我相信有很多业内同行,都有这种痛,训练了很久,效果依旧很差,泛化能力也不行,然后就开始苦恼,为什么自己没有足够的钱,足够的算力。引入动量缓冲m,也就是一阶矩,指数加权平滑梯度,它积累了历史梯度的方向趋势。
2025-11-16 15:32:05
711
原创 由浅入深表达式树(二)遍历表达式树
在数据进入 Kafka 前,MQTT 服务可提供基于 SQL 标准的数据提取,数据与数据格式处理等能力,减少数据二次处理的工作量,同时提供基于 MQTT 协议的事件查询能力(包括订阅 / 取消订阅、消息确认等),方便实现业务逻辑闭环。面对传统批处理数据管道带来的数据时效性差、加工成本高和质量不可控等挑战,基于 Kafka 与 Flink 的实时流处理架构提供的解决方案可以更好地释放数据价值,将数据的处理和治理转移到数据流中,这样您就可以实现构建一次数据,并在创建后的几毫秒内随时随地重复使用。
2025-11-16 15:28:13
598
原创 Web性能优化:What? Why? How?
使用切线向量(Tangent)或副切线(Bitangent)替代法线向量,通过TdotH = dot(tangent, halfVector)计算高光强度,再转换为TsinH = sqrt(1 - TdotH2)实现条状高光效果。该实现通过将Kajiya-Kay模型的核心计算融入URP的标准BRDF框架,既保持了PBR工作流的兼容性,又实现了纤维材质特有的各向异性高光效果。:通过噪声贴图扰动切线方向(ShiftTangent函数),增强高光的动态变化和真实感。D项 法线分布函数?
2025-11-16 15:23:54
227
原创 从性能角度看react组件拆分的重要性
处于waitting状态是因为它在等任务执行,从堆栈可以看出是阻塞在TaskQueue.take方法,org.apache.tomcat.util.threads.TaskQueue是tomcat中的LinkedBlockingQueue,是生产者-消费者模型,take方法阻塞表示当前队列是空的,没有任务需要执行,一旦有任务放入TaskQueue,take方法就会唤醒,进入Runnable状态。这点就不好理解了,应用恢复了,为什么tomcat没有恢复,tomcat线程此时在做什么?
2025-11-16 15:19:28
836
原创 《刚刚问世》系列初窥篇-Java+Playwright自动化测试-- 操作鼠标拖拽 - 番外篇(详细教程)
可孔暗室基础原理对于?个企业专属的智能客服,AI ?模型是必不可少,例如 deepseek、chatGPT 等。 可模型本身并不知道公司的各种产品信息,所以需要我们在给模型发送问题的时候,将产品?册?同发送给模型。 可如果产品?册的内容?较多,例如有上百?,上千?,会为该场景带来很多问题:模型可能?法读取所有内容: ?语?模型只能存储?定量的信息,通常成这个量为上下?窗???。如果产品?册内容超过上下?窗???,模型就会读了后?内容,忘记前?内容。前?所回答的准确率也?法得到保障。模型推理成本较?: 模型推
2025-11-15 16:42:22
438
原创 抽象与性能:从 LINQ 看现代 .NET 的优化之道
既然 GapBuffer 采用下标映射实现实际下标和逻辑下标的转换,而在编辑的过程中,某个字符的逻辑下标往往是不断变动的,而其实际下标则要稳定得多,因此完全可以记录实际下标实现高效率的标记管理。由于间隙内的内容实际不可见,当我通过字符串索引获取字符时,需要跳过间隙,此时存在一个下标映射:将获取字符时的逻辑下标映射到所维护字符数组的实际下标。删除时,直接前移起始指针。局部性编辑:在间隙开头插入时,如果间隙不需要扩容,则记录不变,如果是删除,检查并处理实际下标落入间隙区中的下标,移动或删除,平均时间复杂度。
2025-11-15 16:38:25
261
原创 为什么要有 Buffer Pool?Mysql缓存能否替代Redis?
黄笛丶形1.1 简介ControlNet是由斯坦福大学研究者张吕敏等人于2023年提出的一种AI图像生成控制技术,核心作用是让用户在保持生成图像 “创造力” 的同时,精准控制图像的结构、姿态、轮廓、深度等关键空间信息,解决了传统扩散模型(如 Stable Diffusion)生成结果 “不可控” 的核心痛点。1 核心原理:“锁定结构+释放风格”ControlNet的本质是在扩散模型(如 Stable Diffusion)的基础上,增加了一套 “结构约束机制”,其原理可拆解为 3 个关键步骤:1)提取 “结构
2025-11-15 16:33:55
531
原创 VKProxy 集成 OpenTelemetry
渭丛旱翁如果你也在为“评审慢、质量不稳定、沟通碎片化、重复劳动多”而头疼,这篇文章会把我们在 AIReview 项目中的实践完整分享给你:我们如何把多模型 LLM 能力、Prompt 可定制、异步分析、实时协作、Git 集成等组合起来,让代码评审真正落地、可量化、可持续改进。分层与领域清晰:API(ASP.NET Core)/ Core(领域与业务)/ Infrastructure(EF Core、外部服务、Hangfire、Redis)数据库:SQLite(默认)或 PostgreSQL(生产推荐)
2025-11-15 16:28:46
290
原创 rage 存入的数据在页面关闭后,会自动清除。 、相同 URL 的每个 tab 页签的 sessionStorage 会被隔离,互不 ...
这里我们只需要了解大概流程就好了,至于里面是否有再细节一点的流程,甚至 AOT/JIT,就不去深究,后面有机会再分享,属于另外一范畴,可以看到这里就出现了 Roslyn,他的作用就是用于编译原生的 C# 代码为 IL,你可以把他理解为是一个开源编译器平台,而且他本身还是用 C# 写的,相信自己的直觉,没错,用 C# 写的代码编译 C# ,俗称自举,约等于(鸡生蛋、蛋生鸡),形成这种局面开始是在微软诞生了 Roslyn 之后,早期的编译器还是用 C++ 的。只有知道了语义之后才能真正"活"起来。
2025-11-15 16:23:37
911
原创 CMake构建学习笔记-SQLite库的构建
本相似度计算逻辑,在保证性能和效率的前提下,获取到的结果可能并不是最优的。可模型本身并不知道公司的各种产品信息,所以需要我们在给模型发送问题的时候,将产品?户提出问题后, RAG 会根据问题的内容,在所有的?,向量所包含的信息也就越丰富,使?个基于 RAG 的问答系统的完整流程,包括?,也就意味着向量对应的?它为存储向量做了很多优化,还提供了计算向量相似度等相关的函数,?云百炼的专业向量模型,其处理逻辑对于相关性提供了较好的?户问题的向量,与向量数据库中的向量进?户问题的相关性较低,您可以尝试调整召回的?
2025-11-14 14:18:07
227
原创 每周读书与学习->初识JMeter 元件(一)
既然 GapBuffer 采用下标映射实现实际下标和逻辑下标的转换,而在编辑的过程中,某个字符的逻辑下标往往是不断变动的,而其实际下标则要稳定得多,因此完全可以记录实际下标实现高效率的标记管理。由于间隙内的内容实际不可见,当我通过字符串索引获取字符时,需要跳过间隙,此时存在一个下标映射:将获取字符时的逻辑下标映射到所维护字符数组的实际下标。删除时,直接前移起始指针。局部性编辑:在间隙开头插入时,如果间隙不需要扩容,则记录不变,如果是删除,检查并处理实际下标落入间隙区中的下标,移动或删除,平均时间复杂度。
2025-11-14 14:13:30
282
原创 存往后的数据。 backing file和overlay 对基础镜像做外部快照,生成的快照文件被称为overlay,基础镜像成为b ...
律易跋灼1.1 简介ControlNet是由斯坦福大学研究者张吕敏等人于2023年提出的一种AI图像生成控制技术,核心作用是让用户在保持生成图像 “创造力” 的同时,精准控制图像的结构、姿态、轮廓、深度等关键空间信息,解决了传统扩散模型(如 Stable Diffusion)生成结果 “不可控” 的核心痛点。1 核心原理:“锁定结构+释放风格”ControlNet的本质是在扩散模型(如 Stable Diffusion)的基础上,增加了一套 “结构约束机制”,其原理可拆解为 3 个关键步骤:1)提取 “结构
2025-11-14 14:08:59
254
原创 通知语音播报功能,解锁全新体验
干诼僮捕如果你也在为“评审慢、质量不稳定、沟通碎片化、重复劳动多”而头疼,这篇文章会把我们在 AIReview 项目中的实践完整分享给你:我们如何把多模型 LLM 能力、Prompt 可定制、异步分析、实时协作、Git 集成等组合起来,让代码评审真正落地、可量化、可持续改进。分层与领域清晰:API(ASP.NET Core)/ Core(领域与业务)/ Infrastructure(EF Core、外部服务、Hangfire、Redis)数据库:SQLite(默认)或 PostgreSQL(生产推荐)
2025-11-14 14:04:17
303
原创 基于 IOCP 的协程调度器——零基础深入浅出 C++ 协程
这里我们只需要了解大概流程就好了,至于里面是否有再细节一点的流程,甚至 AOT/JIT,就不去深究,后面有机会再分享,属于另外一范畴,可以看到这里就出现了 Roslyn,他的作用就是用于编译原生的 C# 代码为 IL,你可以把他理解为是一个开源编译器平台,而且他本身还是用 C# 写的,相信自己的直觉,没错,用 C# 写的代码编译 C# ,俗称自举,约等于(鸡生蛋、蛋生鸡),形成这种局面开始是在微软诞生了 Roslyn 之后,早期的编译器还是用 C++ 的。只有知道了语义之后才能真正"活"起来。
2025-11-14 13:59:18
392
原创 微软开源 Microsoft Agent Framework = Semantic Kernel + AutoGen
去找了网络团队,从流量回溯设备上看到400确实是网关返回的,还没有到后面的业务系统,400代表BadRequest,我怀疑是不是请求体的问题,想让网络将那个时间段的流量包数据取下来分析,网络没给,只给我了业务报文参数,走网关请求的业务参数报文是加密的,我本地运行程序可以正常解密报文,我反馈给了负责运维Nginx的团队。不应该啊,以往网关发版的时候,是滚动发版的,F5上先下掉一个机器的流量,停启这个机器上的网关服务,然后F5上流量,F5下流量的时候是有长连接存在的,每次都会等个5分钟左右才能下掉一路的流量。
2025-11-13 16:53:37
250
原创 利用 OpenTelemetry 集成 JMX 监控
HDRP引入更高精度的光照贴图UV生成和分辨率控制,URP随后适配简化版流程,如自动生成Lightmap UVs功能。Unity 5.x之前采用Enlighten光照系统,仅支持静态物体烘焙,动态物体需依赖Light Probe间接光照。URP整合了轻量级烘焙管线,支持混合光照模式(Mixed Lighting),允许静态物体烘焙阴影与动态物体实时交互。光源设为Mixed模式,静态阴影烘焙到光照贴图,动态物体接收实时阴影。:远景物体降低Scale In Lightmap值。
2025-11-13 16:49:25
370
原创 apocelipes
这里需要知道dapo的reward_manager_cls 具体是什么,因为reward需要batch数据才能计算,因此对于reward manager咱们先按下不表(其实dapo对应的reward_manager_cls是在verl/verl/workers/reward_manager/dapo.py),先去dapo_ray_trainer.py看一下batch是怎么采样的,再回来仔细阅读reward的具体计算方法。# max_num_gen_batches是最多可以使用的gen_batch的个数。
2025-11-13 16:44:05
411
原创 【打造自己的 DeepSeek】第 期:为什么要打造自己的 DeepSeek?
因此,Agent的数据和训练目标 均服务于 如何使Agent学会更好的使用工具与外界交互,从而利用外界的信息更好地完成任务。使用rl教会模型最后一种能力(工具间的协调调用,因为此任务比较难学习,需要大量的探索以及较高的泛化性要求)利用模型内部知识+外部知识(R) 根据q生成下一步的工具调用/答案 的能力 (step-wise)而训练目标体现在(1)数据集的构建方案(2)训练策略(loss)相较于传统的single-step的数据及其sft RL的训练方式。所以Agent的目标(需要的推理能力)分为三类。
2025-11-13 16:39:19
286
原创 对ASP.NET MVC项目中的视图做单元测试
因此,Agent的数据和训练目标 均服务于 如何使Agent学会更好的使用工具与外界交互,从而利用外界的信息更好地完成任务。使用rl教会模型最后一种能力(工具间的协调调用,因为此任务比较难学习,需要大量的探索以及较高的泛化性要求)利用模型内部知识+外部知识(R) 根据q生成下一步的工具调用/答案 的能力 (step-wise)而训练目标体现在(1)数据集的构建方案(2)训练策略(loss)相较于传统的single-step的数据及其sft RL的训练方式。所以Agent的目标(需要的推理能力)分为三类。
2025-11-13 16:33:04
409
原创 WCF技术剖析之二十九:换种不同的方式调用WCF服务[提供源代码下载]
业务逻辑是基于线程数据的传递进行处理,主线程传递线程ID到子线程。处理方式:重写线程池的execute(*)、submit(*)方法。关键代码:[traceId:%X{traceId}],traceId是通过拦截器里MDC.put(traceId, tid)添加。4、异步定时任务线程接口ScheduledExecutorService的日志链路追踪。在执行前,执行后进行跟踪ID的生成和删除。2、整合logback,打印日志,logback.xml (日志配置文件)4、异步线程的跟踪ID链路追踪。
2025-11-12 15:18:05
758
原创 关于近期C#大论战的回应
去找了网络团队,从流量回溯设备上看到400确实是网关返回的,还没有到后面的业务系统,400代表BadRequest,我怀疑是不是请求体的问题,想让网络将那个时间段的流量包数据取下来分析,网络没给,只给我了业务报文参数,走网关请求的业务参数报文是加密的,我本地运行程序可以正常解密报文,我反馈给了负责运维Nginx的团队。不应该啊,以往网关发版的时候,是滚动发版的,F5上先下掉一个机器的流量,停启这个机器上的网关服务,然后F5上流量,F5下流量的时候是有长连接存在的,每次都会等个5分钟左右才能下掉一路的流量。
2025-11-12 15:12:51
665
原创 惰性是很可怕的东西,时隔一年多,继续写这个WPF系列,本篇文章继续深入研究WPF的线程和Dispatcher,希望朋友们多多支持。 ...
HDRP引入更高精度的光照贴图UV生成和分辨率控制,URP随后适配简化版流程,如自动生成Lightmap UVs功能。Unity 5.x之前采用Enlighten光照系统,仅支持静态物体烘焙,动态物体需依赖Light Probe间接光照。URP整合了轻量级烘焙管线,支持混合光照模式(Mixed Lighting),允许静态物体烘焙阴影与动态物体实时交互。光源设为Mixed模式,静态阴影烘焙到光照贴图,动态物体接收实时阴影。:远景物体降低Scale In Lightmap值。
2025-11-12 15:07:56
268
原创 缺陷驱动的流程优化和技术引进
这里需要知道dapo的reward_manager_cls 具体是什么,因为reward需要batch数据才能计算,因此对于reward manager咱们先按下不表(其实dapo对应的reward_manager_cls是在verl/verl/workers/reward_manager/dapo.py),先去dapo_ray_trainer.py看一下batch是怎么采样的,再回来仔细阅读reward的具体计算方法。# max_num_gen_batches是最多可以使用的gen_batch的个数。
2025-11-12 15:02:33
471
原创 客户端与服务器持续同步解析(轮询,comet,WebSocket)
因此,Agent的数据和训练目标 均服务于 如何使Agent学会更好的使用工具与外界交互,从而利用外界的信息更好地完成任务。使用rl教会模型最后一种能力(工具间的协调调用,因为此任务比较难学习,需要大量的探索以及较高的泛化性要求)利用模型内部知识+外部知识(R) 根据q生成下一步的工具调用/答案 的能力 (step-wise)而训练目标体现在(1)数据集的构建方案(2)训练策略(loss)相较于传统的single-step的数据及其sft RL的训练方式。所以Agent的目标(需要的推理能力)分为三类。
2025-11-12 14:57:00
322
原创 浅谈我对DDD领域驱动设计的理解
业务逻辑是基于线程数据的传递进行处理,主线程传递线程ID到子线程。处理方式:重写线程池的execute(*)、submit(*)方法。关键代码:[traceId:%X{traceId}],traceId是通过拦截器里MDC.put(traceId, tid)添加。4、异步定时任务线程接口ScheduledExecutorService的日志链路追踪。在执行前,执行后进行跟踪ID的生成和删除。2、整合logback,打印日志,logback.xml (日志配置文件)4、异步线程的跟踪ID链路追踪。
2025-11-11 14:38:34
495
原创 [漫谈] 软件设计的目标和途径
去找了网络团队,从流量回溯设备上看到400确实是网关返回的,还没有到后面的业务系统,400代表BadRequest,我怀疑是不是请求体的问题,想让网络将那个时间段的流量包数据取下来分析,网络没给,只给我了业务报文参数,走网关请求的业务参数报文是加密的,我本地运行程序可以正常解密报文,我反馈给了负责运维Nginx的团队。不应该啊,以往网关发版的时候,是滚动发版的,F5上先下掉一个机器的流量,停启这个机器上的网关服务,然后F5上流量,F5下流量的时候是有长连接存在的,每次都会等个5分钟左右才能下掉一路的流量。
2025-11-11 14:34:03
887
原创 跨平台自动化框架的OCR点击操作实现详解与思考
HDRP引入更高精度的光照贴图UV生成和分辨率控制,URP随后适配简化版流程,如自动生成Lightmap UVs功能。Unity 5.x之前采用Enlighten光照系统,仅支持静态物体烘焙,动态物体需依赖Light Probe间接光照。URP整合了轻量级烘焙管线,支持混合光照模式(Mixed Lighting),允许静态物体烘焙阴影与动态物体实时交互。光源设为Mixed模式,静态阴影烘焙到光照贴图,动态物体接收实时阴影。:远景物体降低Scale In Lightmap值。
2025-11-11 14:29:36
225
原创 ratorAdapter组件,它可以完成类似TPrototypeBindSource组件所完成的工作:定义字段列表,关联数据生成器。 ...
这里需要知道dapo的reward_manager_cls 具体是什么,因为reward需要batch数据才能计算,因此对于reward manager咱们先按下不表(其实dapo对应的reward_manager_cls是在verl/verl/workers/reward_manager/dapo.py),先去dapo_ray_trainer.py看一下batch是怎么采样的,再回来仔细阅读reward的具体计算方法。# max_num_gen_batches是最多可以使用的gen_batch的个数。
2025-11-11 14:24:32
792
原创 .NET周刊【月第期 --】
因此,Agent的数据和训练目标 均服务于 如何使Agent学会更好的使用工具与外界交互,从而利用外界的信息更好地完成任务。使用rl教会模型最后一种能力(工具间的协调调用,因为此任务比较难学习,需要大量的探索以及较高的泛化性要求)利用模型内部知识+外部知识(R) 根据q生成下一步的工具调用/答案 的能力 (step-wise)而训练目标体现在(1)数据集的构建方案(2)训练策略(loss)相较于传统的single-step的数据及其sft RL的训练方式。所以Agent的目标(需要的推理能力)分为三类。
2025-11-11 14:19:31
298
原创 教你如何用GPT-来分析你的dump文件定位内存泄漏问题——避免无效加班必备神器
这里需要知道dapo的reward_manager_cls 具体是什么,因为reward需要batch数据才能计算,因此对于reward manager咱们先按下不表(其实dapo对应的reward_manager_cls是在verl/verl/workers/reward_manager/dapo.py),先去dapo_ray_trainer.py看一下batch是怎么采样的,再回来仔细阅读reward的具体计算方法。# max_num_gen_batches是最多可以使用的gen_batch的个数。
2025-11-10 15:04:34
244
原创 从基础到实战:一文吃透 JS Tuples 与 Records 的所有核心用法
因此,Agent的数据和训练目标 均服务于 如何使Agent学会更好的使用工具与外界交互,从而利用外界的信息更好地完成任务。使用rl教会模型最后一种能力(工具间的协调调用,因为此任务比较难学习,需要大量的探索以及较高的泛化性要求)利用模型内部知识+外部知识(R) 根据q生成下一步的工具调用/答案 的能力 (step-wise)而训练目标体现在(1)数据集的构建方案(2)训练策略(loss)相较于传统的single-step的数据及其sft RL的训练方式。所以Agent的目标(需要的推理能力)分为三类。
2025-11-10 15:00:17
276
原创 存对齐,这往往容易被忽视,但却对程序的性能和内存使用有着重要影响。 一、结构体大小计算的“理论”与“实际”差异 首先,我们可能会想当 ...
HDRP引入更高精度的光照贴图UV生成和分辨率控制,URP随后适配简化版流程,如自动生成Lightmap UVs功能。Unity 5.x之前采用Enlighten光照系统,仅支持静态物体烘焙,动态物体需依赖Light Probe间接光照。URP整合了轻量级烘焙管线,支持混合光照模式(Mixed Lighting),允许静态物体烘焙阴影与动态物体实时交互。光源设为Mixed模式,静态阴影烘焙到光照贴图,动态物体接收实时阴影。:远景物体降低Scale In Lightmap值。
2025-11-10 14:44:54
383
原创 【GitHub每日速递 】 周 课,边学边练!微软 AI 初学者的通关秘籍
因此,Agent的数据和训练目标 均服务于 如何使Agent学会更好的使用工具与外界交互,从而利用外界的信息更好地完成任务。使用rl教会模型最后一种能力(工具间的协调调用,因为此任务比较难学习,需要大量的探索以及较高的泛化性要求)利用模型内部知识+外部知识(R) 根据q生成下一步的工具调用/答案 的能力 (step-wise)而训练目标体现在(1)数据集的构建方案(2)训练策略(loss)相较于传统的single-step的数据及其sft RL的训练方式。所以Agent的目标(需要的推理能力)分为三类。
2025-11-10 14:33:25
308
原创 【源码解读之 Mybatis】【核心篇】-- 第篇:StatementHandler语句处理器
业务逻辑是基于线程数据的传递进行处理,主线程传递线程ID到子线程。处理方式:重写线程池的execute(*)、submit(*)方法。关键代码:[traceId:%X{traceId}],traceId是通过拦截器里MDC.put(traceId, tid)添加。4、异步定时任务线程接口ScheduledExecutorService的日志链路追踪。在执行前,执行后进行跟踪ID的生成和删除。2、整合logback,打印日志,logback.xml (日志配置文件)4、异步线程的跟踪ID链路追踪。
2025-11-09 15:12:13
736
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅