机器学习
kilua_5
这个作者很懒,什么都没留下…
展开
-
如何不使用tf的gpu
import osos.environ[“CUDA_VISIBLE_DEVICES”]="-1"原创 2021-04-21 16:29:51 · 282 阅读 · 0 评论 -
如何从tensorboard中读取数据
问题描述tensorboard中数据如下:想要把数据读取到本地尝试操作:1.使用博文中的方法博文连接出现错误key的列表为空2.把数据上传到TensorBoard.dev,再用dataframe读取由于图片问题安装的TensorBoard是阉割的,没有函数tensorboard.data.experimental.ExperimentFromDev()解决方案:官方readme直接从第一幅图里就下载下来了=。=为因愚蠢而牺牲的一个多小时默哀TAT...原创 2021-01-11 11:35:15 · 661 阅读 · 0 评论 -
yunyang1994tf-yolov3更改锚框记录
更改内容:将原来的9个anchor改成了6个(每个尺度的更改为2个)操作方式:1. 更改config文件中的anchor_per_scale3为22. 更改yolov3.py中的sbbox,mbbox,lboox里面的anchor*(num_class+5)def decode里的conv_output和xy_griddef compute_loss里的conv...原创 2020-12-30 21:35:26 · 347 阅读 · 2 评论 -
NLP中文本的表示方式
文本表示的方法:BOW(bag of words):BOW可以理解为语料库的去重集合,并对集合内的每个单词做唯一索引。之后就可以用该集合构成的一维向量表示语料库中的句子。假设有两个简单文档:文档一:John likes to watch movies. Mary likes too.文档二: John also likes to watch football games.基于上述15个单词的语料库,构建如下一个字典(或者其他集合形式也行):Vocabulary= {“John”: 1, “l原创 2020-10-16 11:05:26 · 476 阅读 · 0 评论 -
logit,softmax和cross entropy
在多分类问题中:笔者理解logit是一个催化剂的作用,它扩大了数据之间的差异性,使一些由于值域有上下限的问题数据之间的差别更大了。之后用softmax函数将扩大后的数据再映射到概率区间(0,1),输出概率最大的类别为预测值,再用cross entropy函数计算损失值。附上公式:logit函数:softmax:cross enropy:yi是正确解的标签,pj是该标签下预测出来的概率流程为(粗略):若是一个四分类问题,softmax输出概率为(0.2,0.1,0.6,0.1)对应索引原创 2020-07-30 20:48:03 · 505 阅读 · 0 评论