ai比赛
iFlyAI
FlyAI 新一代AI竞赛社区
FlyAI是为AI开发者提供数据竞赛并支持GPU离线训练的一站式服务平台。每周免费提供项目开源算法样例,支持算法能力变现以及快速的迭代算法模型。
挑战者,都在FlyAI!
展开
-
给BERT加一个loss就能稳定提升?斯坦福+Facebook最新力作!
人工智能学习离不开实践的验证,推荐大家可以多在FlyAI-AI竞赛服务平台多参加训练和竞赛,以此来提升自己的能力。FlyAI是为AI开发者提供数据竞赛并支持GPU离线训练的一站式服务平台。每周免费提供项目开源算法样例,支持算法能力变现以及快速的迭代算法模型。摘要: 关注CV领域的小伙伴一定都记得Hinton团队在年初提出的SimCLR,采用自监督的对比学习方法进行encoder的训练,各种碾压之前的模型。所以今年我一直在等某个大招,终于在20年的尾巴看到了一丝希望。今天要介绍的这篇工 .....原创 2020-11-12 14:21:10 · 502 阅读 · 1 评论 -
2020年,知识图谱都有哪些研究风向?
摘要: 随着认知智能走进了人们的视野,知识图谱的重要性便日渐凸显。在今年的自然语言处理顶会 ACL 2020 上,自然语言知识图谱领域发生了巨大的革新。ACL 作为 NLP 领域的顶级学术会议,无疑能够很好地呈现该领域的研究风 ...人工智能学习离不开实践的验证,推荐大家可以多在FlyAI-AI竞赛服务平台多参加训练和竞赛,以此来提升自己的能力。FlyAI是为AI开发者提供数据竞赛并支持GPU离线训练的一站式服务平台。每周免费提供项目开源算法样例,支持算法能力变现以及快速的迭代算法模型。随着认知..原创 2020-08-24 14:30:10 · 613 阅读 · 0 评论 -
FlyAI小课堂:Fbank和MFCC介绍-理论和代码
目录简介Fbank处理过程MFCCfbank与mfcc的标准化fbank与mfcc的比较一、简介Fbank:FilterBank:人耳对声音频谱的响应是非线性的,Fbank就是一种前端处理算法,以类似于人耳的方式对音频进行处理,可以提高语音识别的性能。获得语音信号的fbank特征的一般步骤是:预加重、分帧、加窗、短时傅里叶变换(STFT)、mel滤波、去均值等。对fbank做离散余弦变换(DCT)即可获得mfcc特征。MFCC(Mel-frequency cepstral coeffi.原创 2020-08-20 15:08:36 · 3630 阅读 · 2 评论 -
FlyAI资讯:人工智能的前世今生
摘要: 现代电子产品和设备在诸如通信 、娱乐 、安全和医疗保健等许多方面改善了我们的生活质量 ,这主要是因为现代微电子技术的发展极大地改变了人们的日常工作和互动方式。在过去几十年中,摩尔定律一直是通过不断缩小芯 …人工智能学习离不开实践的验证,推荐大家可以多在FlyAI-AI竞赛服务平台多参加训练和竞赛,以此来提升自己的能力。FlyAI是为AI开发者提供数据竞赛并支持GPU离线训练的一站式服务平台。每周免费提供项目开源算法样例,支持算法能力变现以及快速的迭代算法模型。现代电子产品和设备在诸如通信 、娱.原创 2020-08-19 15:26:54 · 1253 阅读 · 0 评论 -
FlyAI小课堂:代码解读Transformer--Attention is All You Need
机器学习离不开实践的验证,推荐大家可以多在FlyAI竞赛服务平台多参加训练和竞赛,以此来提升自己的能力。FlyAI是为AI开发者提供数据竞赛并支持GPU离线训练的一站式服务平台。每周免费提供项目开源算法样例,支持算法能力变现以及快速的迭代算法模型。目录代码结构 调用模型前的设置模块(hparams.py,prepro.py,data_load.py,utils.py) transformer代码解析(modules.py , model.py) 训练和测试(train.py,eva...转载 2020-07-21 14:59:31 · 717 阅读 · 1 评论 -
FlyAI小课堂:深度学习论文翻译解析(5):MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliica
论文标题:MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications论文作者:Andrew G.Howard Menglong Zhu Bo Chen .....论文地址:https://arxiv.org/pdf/1704.04861.pdf (https://arxiv.org/abs/1704.04861)代码地址:TensorFlow官方 github-Tensor...原创 2020-07-20 15:10:54 · 534 阅读 · 0 评论 -
大数据分析 | PCA算法 | 数据集特征数量太多怎么办?用这个算法对它降维打击!
我们都知道,图片格式当中有一种叫做svg,这种格式的图片无论我们将它放大多少倍,也不会失真更不会出现边缘模糊的情况。原因也很简单,因为这种图片是矢量图,一般的图片存储的是每一个像素点的颜色值,而在矢量图当中,我们存储的是矢量,也就是起点终点以及颜色。由于矢量图只记录起点终点,所以无论我们如何放大,图片都不会失真,而传统的图片就做不到这一点。其实svg就相当于图片的降维,我们将上百万的像素点简化成了若干个矢量完成了图片的存储,大大减少了数据的规模。机器学习领域中的降维算法其实也是差不多的原理。背景.转载 2020-07-07 14:54:44 · 3033 阅读 · 0 评论 -
普林、DeepMind新研究:结合深度学习和符号回归,从深度模型中看见宇宙
简单的符号表达式能够有效地建模世界。符号模型紧凑,具备可解释性和良好的泛化能力,但很难处理高维机器学习问题;深度模型擅长在高维空间中学习,但泛化性和可解释性却很差。那么有没有什么办法可以取二者之所长呢?这项研究做到了。选自arXiv,作者:Miles Cranmer等,机器之心编译,参与:杜伟、小舟、魔王。如何将深度模型转换为符号方程?来自普林斯顿、DeepMind 等机构的研究人员提出了一种解决方案:结合深度学习和符号回归实现这一目标。符号模型是自然科学的语言。与深度模型不同,符号.转载 2020-07-06 15:57:22 · 2396 阅读 · 0 评论