给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。
请你计算该表达式。返回一个表示表达式值的整数。
注意:
有效的算符为 ‘+’、‘-’、‘*’ 和 ‘/’ 。
每个操作数(运算对象)都可以是一个整数或者另一个表达式。
两个整数之间的除法总是 向零截断 。
表达式中不含除零运算。
输入是一个根据逆波兰表示法表示的算术表达式。
答案及所有中间计算结果可以用 32 位 整数表示。
题解:
为什么要将看似简单的中缀表达式转换为复杂的逆波兰式?原因在于这个简单是相对人类的思维结构来说的,对计算机而言中序表达式是非常复杂的结构。相对的,逆波兰式在计算机看来却是比较简单易懂的结构。因为计算机普遍采用的内存结构是栈式结构,它执行先进后出的顺序。该题本质上就是用栈来模拟后缀表达式计算的过程,即:
1.当遇到数字时入栈;
2.当遇到运算符时,依次出栈栈顶两个元素,第一个元素为操作数2,第二个元素为操作数1;
3.出栈后立即用操作符进行计算,操作数1在运算符前,操作数2在运算符后;
4.运算结果入栈;
5.重复上述步骤,当逆波兰式结束后,栈中最后一个数即为逆波兰式的运算结果。
还需注意的是:本题的逆波兰式为String类型数组,我们会遇到的是String类型的数字和操作符。所以在进行处理时需注意以下两点:
- 操作数在入栈前记得转成整型,使用Interger.valueOf()方法;
- 在判断操作符类型时,注意不能使用= =,而须用equals()方法判断String的值是否相等。
注: = =比较的是值是否相等。如果是基本数据类型,那仅仅比较值即可。但String是引用数据类型,引用数据类型的变量存的值是数据的地址,所以引用数据类型若使用 = =,则是在比较它们的地址是否相等。此时只能使用equals(),而equals()也不能用于基本数据类型,只可用于比较引用数据类型。
代码如下:
class Solution {
public int evalRPN(String[] tokens) {
Deque<Integer> deque = new LinkedList<>();
for(String s:tokens) {
if("+".equals(s)) {
deque.push(deque.pop()+deque.pop());
}
else if("-".equals(s)) {
deque.push(-deque.pop()+deque.pop());
}
else if("*".equals(s)) {
deque.push(deque.pop()*deque.pop());
}
else if("/".equals(s)) {
int oper2=deque.pop();
int oper1=deque.pop();
deque.push(oper1/oper2);
}
else {
deque.push(Integer.valueOf(s));
}
}
return deque.pop();
}
}