在一个长度为n的数组里的所有数字都在0~n-1的范围内。数组中某些数字是重复的,但不知道有几个数字重复了,也不知道每个数字重复了几次。请找出数组中任意一个重复的数字。例如,如果输入长度为7的数组{2,3,1,0,2,5,3},那么对应的输出是重复的数字2或者3.
如果用暴力循环的话,很容易找出,但时间复杂度O(n^2).
可以用哈希表来解决。从头到尾按顺序扫描数组的每个数字,没扫描到一个数字的时候 ,都可以用O(1)的时间来判断哈希表里是否已经包含了该数字。如果哈希表里还没有这个数字,就把它加入到哈希表。这个算法的时间复杂度为O(n),但它提高时间效率是以一个大小为O(n)的哈希表为代价的。
其实可以利用数组中的数字都在0~n-1的范围内,如果这个数组中没有重复的数字,那么当数组排序之后数字i将出现在下标为i的位置。由于数组有重复的数字,所以上述假设不成立。
从排这个数组。从头到尾扫描这个数组。当扫描到下标为i的数字时,首先比较这个数字(用m表示)是不是等于i。如果是,则接着扫描下一个数字;如果不是,则再拿它和第m个数字进行比较。如果它和第m个数字相等,就找到了一个重复的数字(该数字在下标为i和m的位置都出现了);如果它和第m个数字不相等,就把第i个数字和第m个数字交换,把m放到属于它的位置。接下来在重复这个比较、交换的过程,直到我们发现一个重复的数字。
以数组{2,3,1,0,2,5,3}为例来分析找到重复数字的步骤。数组的第0个数字是2,与它下标不相等,于是把它和下标为2的数字1交换。交换之后的数组是{1,3,2,0,2,5,3}。此时第0个数字是1;仍然与它的下标不相等,继续把它的下标为1的数字3交换,得到数组{3,1,2,0,2,5,3}。接下来继续交换第0个数字3和第3个数字0,得到数组{0,1,2,3,2,5,3}。此时第0、1、2、3数字都和下标相等,接下来扫描到下标为4的数字2.由于它的数值与它的下标不相等,在比较它和下标为2的数字。相等所以找到一个重复的数字。
代码如下:
bool duplicate(int numbers[],int length,int* duplication)
{
if(numbers==nullptr || length<=0)
{
return false;
}
for(int i=0;i<length;++i)
{
if(numbers[i]<0 || numbers[i]>length-1)
return false;
}
for(int i=0;i<length;++i)
{
while(numbers[i] != i)
{
if(numbers[i]==numbers[numbers[i]])
{
*duplication=numbers[i];
return true;
}
int temp=numbers[i];
numbers[i]=numbers[temp];
numbers[temp]=temp;
}
}
return false;
}
尽管有一个两重循环,但每个数字最多只要交换两次就能找到属于它自己的位置,因此时间复杂度O(n),另外,所有操作都是在输入数组上进行的,不需要额外的分配内存,因此空间复杂度为O(1)。