机器学习系列(1)——决策树的简单总结

本文主要是对决策树的概念性的归纳和总结。

0x01、决策树的基本概念

决策树是一种由结点和有向边组成的层次结构。树中包含三种结点:根结点、内部结点和叶结点。

决策树通常采用贪心策略,在选择划分数据的属性时,采取局部最优来构造决策树。

1.1 Hunt算法

Hunt算法是ID3、C4.5和CART等决策树算法的基础。

在Hunt算法中,通过将训练记录相继划分成较纯的子集,以递归方式建立决策树。设 D t D_{t} Dt 是与结点 t t t 相关联的训练记录集,而 y = { y 1 , y 2 , . . . , y c } y=\{y_{1}, y_{2}, ..., y_{c}\} y={ y1,y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>