《代码随想录》Ⅵ 二叉树 701. 二叉搜索树中的插入操作

《代码随想录》Ⅵ 二叉树 701. 二叉搜索树中的插入操作

努力学习!

题目:力扣链接

  • 给定二叉搜索树(BST)的根节点 root​ 和要插入树中的值 value​ ,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据 保证 ,新值和原始二叉搜索树中的任意节点值都不同。

    注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回 任意有效的结果

一、思想

在二叉搜索树(BST)中插入一个新节点,并返回插入后的树根节点。插入过程需要遵循 BST 的性质:

  • 左子树的所有节点值小于根节点值。
  • 右子树的所有节点值大于根节点值。

插入时,我们从根节点开始,根据新节点的值与当前节点值的大小关系,决定向左子树或右子树递归查找插入位置。当找到合适的位置时,创建新节点并插入。

二、代码

class Solution
{
public:
    /**
     * @brief 递归插入新节点到二叉搜索树中
     * @param root 当前遍历的树节点
     * @param val 要插入的值
     *
     * 根据二叉搜索树的性质:
     * 1. 如果val小于当前节点值,递归处理左子树
     * 2. 如果val大于当前节点值,递归处理右子树
     * 3. 当找到合适位置时创建新节点并插入
     */
    void traversal(TreeNode *root, int val)
    {
        // 如果val小于当前节点值,处理左子树
        if (val < root->val) {
            // 如果左子树为空,创建新节点并插入
            if (root->left == NULL) {
                TreeNode *node = new TreeNode(val);
                root->left = node;
                return;
            }
            else {
                // 否则递归处理左子树
                traversal(root->left, val);
            }
        }

        // 如果val大于当前节点值,处理右子树
        if (val > root->val) {
            // 如果右子树为空,创建新节点并插入
            if (root->right == NULL) {
                TreeNode *node = new TreeNode(val);
                root->right = node;
                return;
            }
            else {
                // 否则递归处理右子树
                traversal(root->right, val);
            }
        }
    }

    /**
     * @brief 在二叉搜索树中插入新节点
     * @param root 二叉搜索树的根节点
     * @param val 要插入的值
     * @return TreeNode* 返回插入后的树根节点
     *
     * 处理空树情况,然后调用traversal进行插入操作
     */
    TreeNode *insertIntoBST(TreeNode *root, int val)
    {
        // 如果树为空,直接创建新节点作为根节点
        if (root == NULL) {
            return new TreeNode(val);
        }

        // 保存根节点引用
        TreeNode *dummy = root;

        // 调用traversal进行插入操作
        traversal(root, val);
        return dummy;
    }
};

三、代码解析

1. 算法工作原理分解

1.1 递归插入
  • 目的:通过递归查找插入位置,并在合适的位置创建新节点。

  • 实现

    • 如果当前节点为空,说明找到了插入位置,创建新节点并返回。
    • 如果新节点的值小于当前节点值,递归处理左子树。
    • 如果新节点的值大于当前节点值,递归处理右子树。
1.2 插入位置的判断
  • 新节点值小于当前节点值:说明新节点应该插入到左子树中。
  • 新节点值大于当前节点值:说明新节点应该插入到右子树中。

2. 关键点说明

2.1 BST 性质的应用
  • 高效查找:利用 BST 的性质,可以快速确定新节点的插入位置,避免不必要的遍历。
  • 递归终止条件:通过判断当前节点是否为空,可以找到插入位置并终止递归。
2.2 插入逻辑的清晰性
  • 分情况讨论:根据新节点的值与当前节点值的关系,分情况决定递归处理左子树还是右子树。
  • 高效性:通过递归和分情况讨论,可以在一次遍历中找到插入位置,时间复杂度为 O(n)​。

四、复杂度分析

  • 时间复杂度O(n)

    • 其中 n​ 是树中节点的数量。每个节点最多被访问一次,因此时间复杂度为 O(n)​。
  • 空间复杂度O(n)

    • 递归调用栈的深度最多为树的高度 h​。在最坏情况下(树退化为链表),空间复杂度为 O(n)​。
    • 因此,总空间复杂度为 O(n)​。

白展堂:人生就是这样,苦和累你总得选一样吧?哪有什么好事都让你一个人占了呢。 ——《武林外传》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值