《代码随想录》Ⅵ 二叉树 701. 二叉搜索树中的插入操作
努力学习!
题目:力扣链接
-
给定二叉搜索树(BST)的根节点
root
和要插入树中的值value
,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据 保证 ,新值和原始二叉搜索树中的任意节点值都不同。注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回 任意有效的结果 。
一、思想
在二叉搜索树(BST)中插入一个新节点,并返回插入后的树根节点。插入过程需要遵循 BST 的性质:
- 左子树的所有节点值小于根节点值。
- 右子树的所有节点值大于根节点值。
插入时,我们从根节点开始,根据新节点的值与当前节点值的大小关系,决定向左子树或右子树递归查找插入位置。当找到合适的位置时,创建新节点并插入。
二、代码
class Solution
{
public:
/**
* @brief 递归插入新节点到二叉搜索树中
* @param root 当前遍历的树节点
* @param val 要插入的值
*
* 根据二叉搜索树的性质:
* 1. 如果val小于当前节点值,递归处理左子树
* 2. 如果val大于当前节点值,递归处理右子树
* 3. 当找到合适位置时创建新节点并插入
*/
void traversal(TreeNode *root, int val)
{
// 如果val小于当前节点值,处理左子树
if (val < root->val) {
// 如果左子树为空,创建新节点并插入
if (root->left == NULL) {
TreeNode *node = new TreeNode(val);
root->left = node;
return;
}
else {
// 否则递归处理左子树
traversal(root->left, val);
}
}
// 如果val大于当前节点值,处理右子树
if (val > root->val) {
// 如果右子树为空,创建新节点并插入
if (root->right == NULL) {
TreeNode *node = new TreeNode(val);
root->right = node;
return;
}
else {
// 否则递归处理右子树
traversal(root->right, val);
}
}
}
/**
* @brief 在二叉搜索树中插入新节点
* @param root 二叉搜索树的根节点
* @param val 要插入的值
* @return TreeNode* 返回插入后的树根节点
*
* 处理空树情况,然后调用traversal进行插入操作
*/
TreeNode *insertIntoBST(TreeNode *root, int val)
{
// 如果树为空,直接创建新节点作为根节点
if (root == NULL) {
return new TreeNode(val);
}
// 保存根节点引用
TreeNode *dummy = root;
// 调用traversal进行插入操作
traversal(root, val);
return dummy;
}
};
三、代码解析
1. 算法工作原理分解
1.1 递归插入
-
目的:通过递归查找插入位置,并在合适的位置创建新节点。
-
实现:
- 如果当前节点为空,说明找到了插入位置,创建新节点并返回。
- 如果新节点的值小于当前节点值,递归处理左子树。
- 如果新节点的值大于当前节点值,递归处理右子树。
1.2 插入位置的判断
- 新节点值小于当前节点值:说明新节点应该插入到左子树中。
- 新节点值大于当前节点值:说明新节点应该插入到右子树中。
2. 关键点说明
2.1 BST 性质的应用
- 高效查找:利用 BST 的性质,可以快速确定新节点的插入位置,避免不必要的遍历。
- 递归终止条件:通过判断当前节点是否为空,可以找到插入位置并终止递归。
2.2 插入逻辑的清晰性
- 分情况讨论:根据新节点的值与当前节点值的关系,分情况决定递归处理左子树还是右子树。
- 高效性:通过递归和分情况讨论,可以在一次遍历中找到插入位置,时间复杂度为
O(n)
。
四、复杂度分析
-
时间复杂度:
O(n)
- 其中
n
是树中节点的数量。每个节点最多被访问一次,因此时间复杂度为O(n)
。
- 其中
-
空间复杂度:
O(n)
- 递归调用栈的深度最多为树的高度
h
。在最坏情况下(树退化为链表),空间复杂度为O(n)
。 - 因此,总空间复杂度为
O(n)
。
- 递归调用栈的深度最多为树的高度
白展堂:人生就是这样,苦和累你总得选一样吧?哪有什么好事都让你一个人占了呢。 ——《武林外传》