Jin, J., Hao, L., Xu, Y., Wu, J., and Jia, Q.-S., “Joint Scheduling of Deferrable Demand and Storage With Random Supply and Processing Rate Limits,” IEEE Transactions on Automatic Control, Vol. 66, No. 11, 5506-5513, November 2021.
系列文章:
- 【论文阅读笔记】RL+启发式规则+可延迟储能系统(1):储能问题建模
- 【论文阅读笔记】RL+启发式规则+可延迟储能系统(2):LLF-FD规则及其最优性(当前)
- 【论文阅读笔记】RL+启发式规则+可延迟储能系统(3):凸可扩展性+结合最优控制策略的Actor-Critic方法
文章目录
LLF-LD 优先级规则
通过对任务松弛度的定义( θ i , t = τ i , t − r i , t \theta_{i,t} = \tau_{i,t} - r_{i,t} θi,t=τi,t−ri,t,即剩余服务期限与剩余需求的差值),建立了任务优先级的全序关系。证明了在一定条件下,遵循 LLF-LD 原则的调度策略具有最优性。具体而言,对于两个任务 i 和 j,若 i 的松弛度小于 j,则 i 优先于 j;若松弛度相同,截止时间较晚的任务优先。这一规则为任务的资源分配(能源分配)提供了明确的指导。
定义和动机
LLF-LD(Less Laxity First with Later Deadline)是一种动态优先级调度规则,用于在多任务、随机供应的场景下分配处理资源(如能源)。其核心思想是:
- 松弛度(Laxity)优先:优先处理松弛度更小的任务,以降低未完成惩罚风险。
- 截止时间辅助决策:若两任务松弛度相同,优先处理截止时间更晚的任务,以保留灵活性。
松弛度的定义: 对任务
i
i
i 在阶段
t
t
t,其松弛度为:
θ
i
,
t
=
τ
i
,
t
−
r
i
,
t
\theta_{i,t} = \tau_{i,t} - r_{i,t}
θi,t=τi,t−ri,t
其中:
- τ i , t = t i d − t \tau_{i,t} = t_i^d - t τi,t=tid−t 为剩余处理时间(截止时间 t i d t_i^d tid 与当前时间 t t t 的差值)。
- r i , t r_{i,t} ri,t 为剩余需求(需处理的能源量)。
物理意义:
- 松弛度越小,任务越紧迫(剩余时间仅略多于需求)。
- 截止时间更晚的任务若被延迟,后续可能有更多调整空间,避免过早占用资源。
实现步骤
-
任务排序: 对当前所有任务 i ∈ I t i \in \mathcal{I}_t i∈It,按以下规则排序:
- 主排序:按松弛度 θ i , t \theta_{i,t} θi,t 升序(即 θ i , t \theta_{i,t} θi,t 小者优先)。
- 次排序:若 θ i , t = θ j , t \theta_{i,t} = \theta_{j,t} θi,t=θj,t,按截止时间 t i d t_i^d tid 降序(即截止时间更晚者优先)。
数学表达式: 定义任务 i i i 的优先级 i ≺ j i \prec j i≺j 当且仅当:
θ i , t < θ j , t 或 θ i , t = θ j , t 且 t i d > t j d \theta_{i,t} < \theta_{j,t} \quad \text{或} \quad \theta_{i,t} = \theta_{j,t} \ \text{且} \ t_i^d > t_j^d θi,t<θj,t或θi,t=θj,t 且 tid>tjd -
能源分配: 在每阶段 t t t,总可用能源 A t A_t At 为:
A t = min { u t + g t ( s t ) − a 0 , t , ∑ i ∈ I t min { 1 , r i , t } } A_t = \min \left\{ u_t + g_t(s_t) - a_{0,t}, \sum_{i \in \mathcal{I}_t} \min \{1, r_{i,t} \} \right\} At=min{ut+gt(st)−a0,t,i∈It∑min{1,ri,t}}- 第一项:电网采购 u t u_t ut + 可再生能源 g t ( s t ) g_t(s_t) gt(st) - 储能操作 a 0 , t a_{0,t} a0,t。
- 第二项:所有任务最大可处理量之和(因 C i = 1 C_i=1 Ci=1,每个任务每阶段最多处理1单位)。
按优先级顺序依次分配能源至任务,直至 A t A_t At 耗尽。
-
任务状态更新: 若任务 i i i 分配到 a i , t = 1 a_{i,t}=1 ai,t=1,其剩余需求更新为:
r i , t + 1 = r i , t − a i , t r_{i,t+1} = r_{i,t} - a_{i,t} ri,t+1=ri,t−ai,t
若 r i , t + 1 = 0 r_{i,t+1}=0 ri,t+1=0,任务完成;否则,剩余处理时间更新为 τ i , t + 1 = τ i , t − 1 \tau_{i,t+1} = \tau_{i,t} - 1 τi,t+1=τi,t−1。
数学证明与最优性分析
定理(LLF-LD 的最优性): 在以下条件下,LLF-LD 规则能最小化期望总成本:
-
线性未完成惩罚: q ≥ p t ( s t ) q \geq p_t(s_t) q≥pt(st),确保优先处理任务而非支付惩罚。
-
排除边界情况:任务 i i i 和 j j j 不满足以下条件:
θ j , t ≤ θ i , t , r j , t ≤ r i , t , θ j , t > 0 , r i , t − r j , t ≥ 1 \theta_{j,t} \leq \theta_{i,t}, \quad r_{j,t} \leq r_{i,t}, \quad \theta_{j,t} > 0, \quad r_{i,t} - r_{j,t} \geq 1 θj,t≤θi,t,rj,t≤ri,t,θj,t>0,ri,t−rj,t≥1
(即任务 j j j 的松弛度更小、剩余需求更少,但剩余需求差超过1单位时,可能无法直接应用 LLF-LD)。- 当任务 i i i 和 j j j 满足上述边界条件时,可能存在无法通过 LLF-LD 确定优先级的情况(如任务 j j j 需求少但紧迫)。此时需结合动态规划或启发式方法局部调整。
证明思路(基于动态规划与交换论证):
- 反证法:假设存在更优策略 π \pi π 未遵循 LLF-LD,则构造策略 π ˉ \bar{\pi} πˉ,在阶段 t t t 交换任务 i i i 和 j j j 的处理顺序,证明 π ˉ \bar{\pi} πˉ 的成本不高于 π \pi π。
- 松弛度与截止时间的单调性:处理松弛度更小的任务减少未来惩罚风险;截止时间更晚的任务处理延迟后,仍有更多机会补救。
最优性证明步骤
1. 问题形式化
设总成本为未完成任务惩罚之和:
J
=
∑
t
=
1
T
q
⋅
∑
i
=
1
N
r
i
,
t
⋅
I
{
τ
i
,
t
=
0
}
J = \sum_{t=1}^T q \cdot \sum_{i=1}^N r_{i,t} \cdot \mathbb{I}_{\{\tau_{i,t}=0\}}
J=t=1∑Tq⋅i=1∑Nri,t⋅I{τi,t=0}
其中
I
{
τ
i
,
t
=
0
}
\mathbb{I}_{\{\tau_{i,t}=0\}}
I{τi,t=0}表示任务
i
i
i在截止时间后仍未完成。目标是选择处理顺序最小化
J
J
J。
2. 交换论证(Exchange Argument)
核心思想:若存在一个最优策略在某一时刻未遵循LLF-LD规则,则可通过调整任务顺序构造更低成本策略,导出矛盾。
步骤:
- 假设存在最优策略
π
∗
π^*
π∗,在某一时刻
t
t
t未遵循LLF-LD:
- 任务 i i i被处理,而存在任务 j j j满足 θ j , t < θ i , t \theta_{j,t} < \theta_{i,t} θj,t<θi,t(或 θ j , t = θ i , t \theta_{j,t} = \theta_{i,t} θj,t=θi,t且 τ j , t > τ i , t \tau_{j,t} > \tau_{i,t} τj,t>τi,t)。
- 构造调整策略 π ′ π' π′:在 t t t时刻交换 i i i与 j j j的处理顺序。
- 分析成本变化:
- Case 1:两任务均能在截止时间前完成,交换顺序不影响总成本;
- Case 2:交换后任务 j j j的松弛度更低,可能减少其超期风险;
- Case 3:若任务 j j j因未被优先处理而超期,则 π ′ π' π′比 π ∗ π^* π∗成本更低,与 π ∗ π^* π∗最优性矛盾。
3. 关键引理
引理1(松弛度单调性):若任务 j j j的松弛度 θ j , t ≤ θ i , t \theta_{j,t} \leq \theta_{i,t} θj,t≤θi,t,则优先处理 j j j不会增加总未完成惩罚。
证明:
- 若 θ j , t < θ i , t \theta_{j,t} < \theta_{i,t} θj,t<θi,t,则 j j j的剩余时间窗口更紧张,延迟处理 j j j可能致其超期;
- 若 θ j , t = θ i , t \theta_{j,t} = \theta_{i,t} θj,t=θi,t且 τ j , t > τ i , t \tau_{j,t} > \tau_{i,t} τj,t>τi,t,则 j j j的截止时间更晚,优先处理 i i i不会比优先处理 j j j更优(因 i i i的截止时间更紧迫)。
4. 动态规划递归分析
贝尔曼方程:
J
t
(
{
r
i
,
t
,
τ
i
,
t
}
)
=
min
a
t
(
q
⋅
∑
i
r
i
,
t
⋅
I
{
τ
i
,
t
=
0
}
+
E
[
J
t
+
1
(
{
r
i
,
t
+
1
,
τ
i
,
t
+
1
}
)
]
)
J_t(\{r_{i,t}, \tau_{i,t}\}) = \min_{a_t} \left( q \cdot \sum_i r_{i,t} \cdot \mathbb{I}_{\{\tau_{i,t}=0\}} + \mathbb{E}[J_{t+1}(\{r_{i,t+1}, \tau_{i,t+1}\})] \right)
Jt({ri,t,τi,t})=atmin(q⋅i∑ri,t⋅I{τi,t=0}+E[Jt+1({ri,t+1,τi,t+1})])
归纳假设:
J
t
+
1
J_{t+1}
Jt+1在LLF-LD规则下为最优。
归纳步骤:
- 在时刻 t t t,按LLF-LD选择任务 j j j处理,其松弛度 θ j , t \theta_{j,t} θj,t最小;
- 若存在另一任务 i i i未被优先处理,则其松弛度 θ i , t ≥ θ j , t \theta_{i,t} \geq \theta_{j,t} θi,t≥θj,t;
- 根据引理1,优先处理 j j j可最小化未来惩罚 E [ J t + 1 ] \mathbb{E}[J_{t+1}] E[Jt+1],即 J t J_t Jt在LLF-LD下最优。
5. 例外条件的作用
例外条件排除:
∄
(
i
,
j
)
:
θ
j
≤
θ
i
,
τ
j
≤
τ
i
,
r
i
>
r
j
\nexists (i,j): \theta_j \leq \theta_i, \ \tau_j \leq \tau_i, \ r_i > r_j
∄(i,j):θj≤θi, τj≤τi, ri>rj
- 物理意义:避免存在任务 j j j比任务 i i i更紧迫( θ j ≤ θ i \theta_j \leq \theta_i θj≤θi)、截止时间更早( τ j ≤ τ i \tau_j \leq \tau_i τj≤τi),但剩余需求更小( r j < r i r_j < r_i rj<ri)的情况;
- 必要性:在此类情况下,优先处理 j j j可能因 r j r_j rj较小而快速释放资源,但LLF-LD可能优先处理 i i i,导致次优。
扩展到不同处理速率 C i C_i Ci 的任务
若任务 i i i 的最大处理速率为 C i > 1 C_i > 1 Ci>1,可通过 任务分解 将其等效为多个 C i = 1 C_i=1 Ci=1 的子任务:
- 分解方法: 设任务
i
i
i 剩余需求为
r
i
,
t
=
d
⋅
C
i
+
r
r_{i,t} = d \cdot C_i + r
ri,t=d⋅Ci+r(
d
∈
N
+
d \in \mathbb{N}_+
d∈N+,
r
∈
{
0
,
1
,
…
,
C
i
−
1
}
r \in \{0,1,\dots,C_i-1\}
r∈{0,1,…,Ci−1}),则:
- r r r 个子任务需求为 d + 1 d+1 d+1。
- C i − r C_i - r Ci−r 个子任务需求为 d d d。
- 应用 LLF-LD:对所有子任务按 LLF-LD 排序,分配能源后合并结果。
示例(图2):
- 原任务: C i = 3 C_i=3 Ci=3, r i , t = 11 = 3 × 3 + 2 r_{i,t}=11 = 3 \times 3 + 2 ri,t=11=3×3+2。
- 分解为:2个子任务需求4,1个子任务需求3。
- 分配时,每个子任务独立参与 LLF-LD 排序。