10、Linux桌面部署全解析

Linux桌面部署全解析

1. 瘦客户端计算与Linux桌面

瘦客户端计算通常需要专用设备,但也可借助瘦客户端软件来显示和与Linux桌面进行交互。Windows用户常用的Citrix重显示软件,可用于访问远程系统,Linux用户也能使用它访问微软终端服务。反之,通过重显示技术,Linux桌面能作为Windows桌面的补充。

瘦客户端计算还可充当安全设备,用于访问像CRM数据库这类在独立网络配置中难以安全提供服务的远程系统。在瘦客户端计算模式下,不授予本地程序和数据访问权限,而是使用重显示软件远程访问程序和信息,瘦客户端计算机与应用服务器之间仅交换用户输入和访问系统所需的图形数据。数据存储和程序执行都在数据中心安全进行,这为访问客户记录或其他敏感数据增添了一层安全保障,重显示会话可作为安全系统的守门人。厚客户端和瘦客户端计算可相互补充,在不同环境中发挥作用。

2. 安装厚客户端Linux桌面

Linux桌面安装已从过去复杂混乱的任务变得简单流畅,只需点击几下即可完成。Linux桌面的一个优势是,由于支持Linux的硬件供应商比Windows少,Linux发行版会尽力提供所有硬件驱动。大多数Linux发行版安装时无需第三方驱动,在普通硬件上的设置相当轻松。相比之下,Windows安装可能需要用户手动查找制造商指定的驱动。

Linux发行版在安装过程中会考虑其他操作系统的存在,并可进行调整,让用户选择要启动的操作系统。大多数发行版会识别Windows安装,并通过安装和配置引导加载程序,使其与旧版安装尽可能和平共存,让用户能选择启动的操作系统。

3. 文件系统
3.1 Windows文件系统 </
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值