-本周主要学习了递归算法,算是认识到了算法的奇妙之处,也是第一个学习的算法,通过这个算法也是认识到了原来题可以这样分解,一个大问题逐步逐步分解为小问题,当然递归算法学起来还是有一些困难,但是遇到难题,是一种很好的办法
- 就举一个最简单的例子菲波那契数列来说吧
菲波那契数列是指这样的数列: 数列的第一个和第二个数都为1,接下来每个数都等于前面2个数之和。
给出一个正整数a,要求菲波那契数列中第a个数是多少。
该问题即最简单的递归算法问题,就逐步分解,直接让我们来求是第几个数是比较困难的,因此我们可以根据他所说,求前面两个数的和,而前面两个数我们又可以分别表示为他们的前面两个数的和,这样层层递归,就会把问题回归到第一个和第二个数上面,而对于第二个数和第一个数我们是知道的,这样把复杂的问题简单化,在从第一个第二个数层层回到我们要求的数,这样就简单了许多。
而递归算法最重要的我认为就是明确终止条件,即我们已知的最简单的一部分,然后根据这部分,在层层递进,找到我们想要的答案。
代码:`
#include <iostream>
#include<string>
#include<cstring>
#include<cstdio>
using namespace std;
int f(int m)
{
if(m==1||m==2)
return 1;//这里就是我们的终止条件,回到的最简单的那部分
else return(f(m-1)+f(m-2));//否则把当前的数依次递归
}
int main()
{
int n,i,a[20],b[20];
cin>>n;
for(i=0;i<n;i++)
cin>>a[i];
for(i=0;i<n;i++)
{b[i]=f(a[i]);//这里b数列就代表a数列对应在菲波那契数列中的值
cout<<b[i]<<endl;}
return 0;
}