Python
文章平均质量分 83
ikxyang
那有什么岁月静好,只不过有人替你负重前行
展开
-
Pandas 函数
统计汇总函数函数含义min()计算最小值max()计算最大值sum()求和mean()计算平均值count()计数(统计非缺失元素的个数)size()计数(统计所有元素的个数)median()计算中位数var()计算方差std()计算标准差quantile()计算任意分位数cov()计算协方差corr()计算相关系数skew()计算偏度kurt()计算峰度mode()计算众原创 2021-12-17 14:49:21 · 203 阅读 · 0 评论 -
python文件操作
一、遍历文件夹批量操作的前提就是对文件夹进行遍历,使用os模块可以轻松的遍历文件夹,os.walk 遍历后产生三个参数:import os for dirpath, dirnames, filenames in os.walk(r'C:\\Program Files (x86)'): print(f'打开文件夹{dirpath}') # 当前文件夹路径 if dirnames: print(dirnames) # 包含文件夹名称[列表形式] if f原创 2021-12-17 14:47:37 · 238 阅读 · 0 评论 -
Python高级函数
Python高级函数Lambda 函数Lambda 函数是一种比较小的匿名函数——匿名是指它实际上没有函数名。Python 函数通常使用 def a_function_name() 样式来定义,但对于 lambda 函数,我们根本没为它命名。这是因为 lambda 函数的功能是执行某种简单的表达式或运算,而无需完全定义函数。lambda 函数可以使用任意数量的参数,但表达式只能有一个。 x = lambda a, b : a * b print(x(5, 6)) # prints '30'原创 2021-12-17 14:38:29 · 152 阅读 · 0 评论 -
Python系列之装饰器(decorator)
Python系列之装饰器(decorator)Python装饰器的本质Python的装饰器本质上是一个嵌套函数,它接受被装饰的函数(func)作为参数,并返回一个包装过的函数。这样我们可以在不改变被装饰函数的代码的情况下给被装饰函数或程序添加新的功能。Python的装饰器广泛应用于缓存、权限校验(如django中的@login_required和@permission_required装饰器)、性能测试(比如统计一段程序的运行时间)和插入日志等应用场景。有了装饰器,我们就可以抽离出大量与函数功能本身无关原创 2021-12-17 14:36:23 · 3397 阅读 · 3 评论 -
Python字典类型数据常见操作及排序
Python字典类型数据常见操作及排序以下均使用bpython字典的创建字典的创建主要有2种方法: 直接赋值和根据键赋值。下例中分别使用2种方法创建了字典d1和字典d2。>>> d1 = {'key3': 4, 'key2': 5, 'key1': 4}>>> print(d1){'key3': 4, 'key2': 5, 'key1': 4, }>>> d2 = dict()>>> d2['key5']=1>&原创 2021-12-17 14:33:07 · 950 阅读 · 0 评论 -
Python 异步框架---Sanic
Python 异步框架—Sanic简介Sanic 是 Python3.7+ Web 服务器和 Web 框架(Sanic 不仅仅是一个 框架,它还是一个 Web 服务器),旨在提高性能。它允许使用 Python3.5 中添加的 async/await 语法,这使得您的代码有效的避免阻塞从而达到提升响应速度的目的。Sanic(包括Vibora,Vibora声称比其它框架快几倍,比竞争对手Sanic还快两倍多。)与flask有点类似,但有不同。开始1 新建项目项目名称为sanic_pro在该目录下新原创 2021-11-30 16:30:50 · 3288 阅读 · 0 评论 -
Python多进程与多线程编程
Python多进程与多线程编程重要知识点 - 什么是进程(process)和线程(thread)进程是操作系统分配资源的最小单元, 线程是操作系统调度的最小单元。一个应用程序至少包括1个进程,而1个进程包括1个或多个线程,线程的尺度更小。每个进程在执行过程中拥有独立的内存单元,而一个线程的多个线程在执行过程中共享内存。网上有篇阮一峰的博客曾对进程和线程做出了一个非常浅显的解释,我在这里贴出来方便大家理解。计算机的核心是CPU,它承担了所有的计算任务。它就像一座工厂,时刻在运行。假定工厂的原创 2021-12-17 14:25:49 · 229 阅读 · 0 评论