论文粗读系列
文章平均质量分 89
论文粗读系列
ileln
这个作者很懒,什么都没留下…
展开
-
论文粗读系列-12:LayerDiff
论文粗读系列-12:LayerDiff原创 2024-03-21 13:31:45 · 995 阅读 · 0 评论 -
论文粗读系列-13:XVAL
论文粗读系列13:XVAL原创 2024-03-21 11:42:34 · 809 阅读 · 0 评论 -
论文粗读系列-11:MineDreamer
#论文粗读系列-11:MineDreamer原创 2024-03-19 20:21:24 · 798 阅读 · 0 评论 -
论文粗读系列-10:SCP-Diff
论文粗读系列-10:SCP-Diff原创 2024-03-19 11:07:56 · 975 阅读 · 1 评论 -
论文粗读系列-9:Revisiting Deep Learning Models for Tabular Data
论文粗读系列-9:Revisiting Deep Learning Models for Tabular Data原创 2024-03-14 16:41:47 · 397 阅读 · 1 评论 -
论文粗读系列-8:PFE
论文粗读系列-8:PFE原创 2024-03-14 15:29:02 · 930 阅读 · 1 评论 -
论文粗读系列-7: TabuLa
论文粗读系列-7:Tabula原创 2024-03-13 17:31:55 · 773 阅读 · 0 评论 -
论文粗读系列-6:TabCSDI
论文粗读系列-6:TabCSDI原创 2024-03-13 16:59:31 · 386 阅读 · 0 评论 -
论文粗读系列-5:Quantifying and Mitigating Privacy Risks for Tabular Generative Models
论文粗读系列-5原创 2024-03-13 12:46:48 · 338 阅读 · 0 评论 -
论文粗读系列-4:BLIP-Diffusion
链接:[主题驱动的文本到图像生成模型基于文本提示创建输入主题的新颖再现。现有的模型需要进行长时间的微调,并且难以保持主体的保真度。为了克服这些限制,作者引入了BLIP-Diffusion,这是一种新的主题驱动图像生成模型,支持多模态控制,它消耗主题图像和文本提示的输入。与其他主题驱动的生成模型不同,BLIP-Diffusion引入了一种新的多模态编码器,该编码器经过预训练以提供主题表示。作者首先根据BLIP-2对多模态编码器进行预训练,以产生与文本对齐的视觉表示。原创 2024-03-12 21:43:30 · 1103 阅读 · 1 评论 -
论文粗读系列-3:DEADiff
论文笔记:DEAdiff原创 2024-03-12 17:37:54 · 1387 阅读 · 1 评论 -
论文粗读系列-2:SDEDIT
SDEdit学习笔记原创 2024-03-12 10:50:58 · 1029 阅读 · 1 评论 -
论文粗读系列-1:VideoElevator
论文粗读:VideoElevator: Elevating Video Generation Quality with Versatile Text-to-Image Diffusion Models原创 2024-03-11 21:39:56 · 844 阅读 · 1 评论