PTA乙级 1003 我要通过!c++实现
题目:
“答案正确”是自动判题系统给出的最令人欢喜的回复。本题属于 PAT 的“答案正确”大派送 —— 只要读入的字符串满足下列条件,系统就输出“答案正确”,否则输出“答案错误”。
得到“答案正确”的条件是:
1.字符串中必须仅有 P、 A、 T这三种字符,不可以包含其它字符;
2.任意形如 xPATx 的字符串都可以获得“答案正确”,其中 x 或者是空字符串,或者是仅由字母 A 组成的字符串;
3.如果 aPbTc 是正确的,那么 aPbATca 也是正确的,其中 a、 b、 c 均或者是空字符串,或者是仅由字母 A 组成的字符串。
现在就请你为 PAT 写一个自动裁判程序,判定哪些字符串是可以获得“答案正确”的。
输入格式:
每个测试输入包含 1 个测试用例。第 1 行给出一个正整数 n (<10),是需要检测的字符串个数。接下来每个字符串占一行,字符串长度不超过 100,且不包含空格。
输出格式:
每个字符串的检测结果占一行,如果该字符串可以获得“答案正确”,则输出 YES,否则输出 NO。
输入样例:
8
PAT
PAAT
AAPATAA
AAPAATAAAA
xPATx
PT
Whatever
APAAATAA
输出样例:
YES
YES
YES
YES
NO
NO
NO
NO
本题思路:
根据条件,我们不妨将每种情况都列出来,寻找一下其中隐藏的规律
条件1.简单明了,字符串中只能存在P.A.T三种字符,可以用if语句实现它
条件2.XPATX,X可以是空或者仅有字母A组成的字符串。结合条件一,暂时的可能有:PAT.APATA.AAPATAA.AAAPATAAA…
条件3.如果 aPbTc 是正确的,那么 aPbATca 也正确,abc均为空或由A组成的字符串,我们将刚才的所有可能一一代入试试:
可能1.PAT正确
a=空,b=A,c=空,则PAAT正确,继续代入a=空,b=AA,c=空,则PAAAT正确,以此类推,得到PAAA…T正确。得到:P和T中间可以有≥1个任意数量的A。
可能2.APATA正确
a=A,b=A,c=A,则APAATAA正确,继续代入,a=A,b=AA,c=AA,则APAAATAAA,正确…得到:APAAA…TAAA…正确,其中PT间的A和T后的A数量相同。
可能3.AAPATAA正确
a=AA,b=A,c=AA,则AAPAATAAAA正确,继续代入,a=AA,b=AA,c=AAAA,则AAPAAATAAAAAA正确,得到:AAPAA…TAA…正确,并且我们结合可能1,可能2的推论,得到一个结论,也是本题算法的核心点:
P前面的A的数量乘以PT之间的A的数量必须要等于T后面的A的数量!
根据此算法,上代码:
#include <iostream>
#include <string>
using namespace std;
int main()
{
int n;
cin>>n;//测试样例数目
for(int i=0;i<n;i++)
{
string s;
int cnt_p = 0, cnt_t = 0, other = 0;//cnt为count的缩写,作为计数器
int flag_p, flag_t;//相当于“指针”,标记p,t在字符串数组中的位置
cin>>s;
int len = s.length();
for(int i = 0; i < len; i++)
{
if(s[i] == 'P')
{
cnt_p++;
flag_p = i;
}
else if(s[i] == 'T')
{
cnt_t++;
flag_t = i;
}
else if(s[i] != 'A'){
other++;
}
}
if((cnt_p != 1) || (cnt_t != 1) || (other!=0) || (flag_t - flag_p <= 1))//条件一的判断
cout<<"NO"<<endl;
else if(flag_p * (flag_t-flag_p-1) == len - flag_t - 1)//核心算法的语句
cout<<"YES"<<endl;
else
cout<<"NO"<<endl;
}
return 0;
}
代码已AC,有不理解的小伙伴可以留言评论~,新年里坚持打卡学习,大家也要坚持完成自己立下的各种小flag哦–