总共八道题目,由于教材实在没办法买到加上琐事甚多,到考试前半小时我才第一遍浏览了一下教材,我们上课的老师翻译的《算法引论》
一个数值算法,数学证明题
第二题是图算法,找到图中三角形的个数
用邻接矩阵A表示图,然后计算A^2,里面的1的个数就是三角形数(先选定一行或者一列的两个点和另外一个点,如果平方的矩阵上这点为1那么A的这两个点都为1,就是说相关的三个点联通)
第三题是N个数找到两个数之和为X的,构造一个前序线索二叉搜索树,然后两个指针指向最小和最大的两个节点依次判断和与X的关系,调整指针即可
第四题是背包问题,我考前没看过,按照SICP第一章还是第二章里讲的那个换零钱问题做了,递归分解,问题是我貌似没有把结束条件写全。。。-___-b
第五题是凸包问题,我之前就不知道啥是凸包,然后卷子上也没写,我就囧了,然后在前面同学的卷子上知道了什么叫凸包。。。
第六题忘了
第七题证明非循环有向图必有一个点入度为0然后写一个拓扑排序,我还是不知道啥是拓扑排
序 郁闷
第八题是快排里面的一些细节问题
一个数值算法,数学证明题
第二题是图算法,找到图中三角形的个数
用邻接矩阵A表示图,然后计算A^2,里面的1的个数就是三角形数(先选定一行或者一列的两个点和另外一个点,如果平方的矩阵上这点为1那么A的这两个点都为1,就是说相关的三个点联通)
第三题是N个数找到两个数之和为X的,构造一个前序线索二叉搜索树,然后两个指针指向最小和最大的两个节点依次判断和与X的关系,调整指针即可
第四题是背包问题,我考前没看过,按照SICP第一章还是第二章里讲的那个换零钱问题做了,递归分解,问题是我貌似没有把结束条件写全。。。-___-b
第五题是凸包问题,我之前就不知道啥是凸包,然后卷子上也没写,我就囧了,然后在前面同学的卷子上知道了什么叫凸包。。。
第六题忘了
第七题证明非循环有向图必有一个点入度为0然后写一个拓扑排序,我还是不知道啥是拓扑排
序 郁闷
第八题是快排里面的一些细节问题