//有一质点,它的加速度为2m/s2,初速度为5m/s,计算质点在10~15s内的位移。
#include <stdio.h>
#define DELTA 0.00001//小区间长度
int main()
{
double v0=5; //初速度
double t; //运动持续时间
double s = 0; //位移
double a=2; //加速度
for(t = 10.0;t<=15.0;t+=DELTA)
s+=(v0+a*t)*DELTA;
printf("s=%f\n",s);
//s也可以这么算
//使用高中物理学常用的匀加速直线运动公式:s=v0*t+0.5*a*t^2
//10~15s内的位移=前15秒的位移-前10秒的位移
s=(v0*(15.0)+0.5*a*(15.0)*(15.0))-(v0*(10.0)+0.5*a*(10.0)*(10.0));
printf("s=%f\n",s);
//当然,更酷的方法是"s=平均速度*运动时间"
//s=((v10+v15)/2)*(15-10)
s=((v0+a*10)+(v0+a*15))*(15-10)/2;
printf("s=%f\n",s);
return 0;
}
//我补了后面两种位移算法
//代码写得很乱。
昨天我去看了数学建模比赛.看了之后,觉得数学潜藏着强大的力量.
在读高中时,我很喜欢物理."无限分割"的数学思想一直使我"难以忘怀".
最近在复习高数,突然觉得"牛顿-莱布尼茨公式"很厉害。因为它似乎能很大程度地降低计算的时间复杂度.
若函数f(x)在[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且F(x)是f(x)的一个原函数,则
It is never too late to mend.亡羊补牢
今后我要好好学数学和基础知识!