自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 机器学习西瓜书 名次解释,概念题汇总

自用

2022-11-01 20:04:00 330 1

原创 吃完大西瓜 第七章贝叶斯分类

贝叶斯决策论是指概率框架下进行决策的基本方法。比如,对分类任务来说,求得决策相关的所有概率后,基于概率和误判损失来进行最优分类

2022-10-30 23:58:09 160

原创 吃瓜教程Task4:神经网络 西瓜书第五章

吃瓜教程task4

2022-10-23 00:18:24 292

原创 吃瓜教程Task 3 决策树算法

本章介绍的是决策树算法,决策树算法是一类非参的模型,在学习过程中没有显式的参数训练过程。一:如何生成决策树?决策树的生成可以视作对样本空间反复划分成一个个区域的过程,这些区域互不相交,且并集为整个样本空间。用于分类时,每个区域返回一个类别判断或者类别判断的概率。算法采用递归这种计算机非常善于处理的操作进行。对递归来说最重要的便是设置递归的停止条件,决策树算法中体现了三个递归停止的条件。其次树的生成需要我们遵循一定的准则,选取属性划分,可以遵循最小错误率,也可以使用诸如信息增益,基尼指数等指标来进行。

2022-10-20 19:16:35 339

原创 K近邻算法的概率角度解释

我们从密度估计的角度能得出来相同的对KNN算法的解读。

2022-10-15 00:21:28 986

原创 吃瓜教程Task2 机器学习西瓜书第三章线性模型

在第三章的线性模型中只介绍了线性回归,对数几率回归和线性判别分析。这三个模型也分别对应了常见的三类不同的机器学习任务,分别是回归问题,分类问题和特征降维。但是线性模型不止此三个,凡是最终要学习的假设空间定义为f(x)=WtX+B的本质上都可以称之为线性模型,譬如后续章节中介绍的感知机和支持向量机,最终学习到的模型也是f(x)=WtX+B的形式。这几个算法的区别仅仅在于学习的“策略”不同,学习“策略”就是我们从有无限个参数确定的无限个线性函数中选出来我们最想要的那个线性函数的所依赖的准则和标准。

2022-10-13 23:43:31 459

原创 吃瓜教程Task1笔记 fromHan

采样方法:西瓜书前两章在本书后面很多地方也有用到,比如bagging 方法正是基于自助采样法,集成方法希望基学习器好而不同,通过改变学习样本的分布可以做到这点,让学习器学习不同的样本从而增大学习器间的差异。相较于adaboost每次给样本重新分配权重改变分布,bagging采用bootstrap采样法也可以看作一种改变样本分布的形式,被选中的样本权重为1,未被选中的样本权重为0,T次bootstrap 使得T个bagging 集成的学习器以不同的样本分布学习,增大了学习器的多样性。还有交

2022-10-11 22:09:53 354 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除