HDU 3923 Invoker (polya 定理+逆元)

题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=3923


题意大概就是有条n长度的项链,m种不同的颜色,问可以组成多少种不同的项链(翻转与旋转后相同的都算是同一条项链)

用polya 定理


AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <list>
#include <deque>
#include <queue>
#include <iterator>
#include <stack>
#include <map>
#include <set>
#include <algorithm>
#include <cctype>
using namespace std;

typedef __int64 LL;
const int N=1;
const LL mod=1000000007LL;
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0);

LL powmod(LL a,LL b)
{
    LL ans=1;
    while(b)
    {
        if(b&1) ans=(ans*a)%mod;
        a=(a*a)%mod;
        b>>=1;
    }
    return ans;
}

LL ext_gcd(LL a,LL b,LL &x,LL &y)
{
    LL t,ret;
    if(!b)
    {
        x=1,y=0;
        return a;
    }
    ret=ext_gcd(b,a%b,x,y);
    t=x,x=y,y=t-a/b*y;
    return ret;
}

LL euler(LL n)
{
    LL ans=n;
    for(LL i=2;i*i<=n;i++)
        if(n%i==0)
        {
            ans=ans/i*(i-1);
            while(n%i==0)
                n/=i;
        }
    if(n>1)
        ans=ans/n*(n-1);
    return ans;
}

int main()
{
    int i,j,t,ca=0;
    scanf("%d",&t);
    while(t--)
    {
        LL n,c;
        scanf("%I64d%I64d",&c,&n);
        LL xh=0;
        for(LL i=1;i<=n;i++)
            if(n%i==0)
                xh=(xh+powmod(c,i)*euler(n/i))%mod;
        if(n&1)
            xh+=n*powmod(c,n/2+1);
        else
            xh+=n/2*(powmod(c,n/2)*(c+1));
        xh=xh%mod;
        LL x,y;
        ext_gcd(2*n,mod,x,y);
        x=(x%mod+mod)%mod;
        xh=(xh*x)%mod;
        printf("Case #%d: %I64d\n",++ca,xh);
    }
    return 0;
}


AC代码2:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <string>
#include <vector>
#include <list>
#include <deque>
#include <queue>
#include <iterator>
#include <stack>
#include <map>
#include <set>
#include <algorithm>
#include <cctype>
using namespace std;

typedef long long LL;
const int N=21;
const LL II=1000000007;

LL m,n;
LL ans,k;
LL gcdm[99999];

LL gcd(LL a,LL b)
{
    while(b)
    {
        a=a%b;
        swap(a,b);
    }
    return a;
}

LL Extended_Euclid(LL x,LL mod)
{
    LL X1=1,X2=0,X3 = mod;
    LL Y1=0,Y2=1,Y3 = x;
    while(true)
    {
        if (Y3 == 0)    return 0; //无逆元
        if (Y3 == 1)    return Y2; //Y2为逆元
        LL Q = X3 / Y3;
        LL T1 = X1 - Q*Y1, T2 = X2 - Q*Y2, T3 = X3 - Q*Y3;
        X1 = Y1; X2 = Y2; X3 = Y3;
        Y1 = T1; Y2 = T2; Y3 = T3;
    }
}

int main()
{
    int i,T,ci=0;
    cin>>T;
    while(T--)
    {
        scanf("%lld%lld",&m,&n);
        gcdm[0]=1;
        for(i=1;i<=n;i++)
            gcdm[i]=(gcdm[i-1]*m)%II;
        ans=0;
        for(i=1;i<=n;i++)
        {
            k=gcdm[gcd(n,i)];
            ans=(ans+k)%II;//不知道这个地方为什么不用乘逆元
        }
        if(n&1)
        {
            ans=(ans+n*gcdm[n/2+1])%II;//关于对角线的对称
            ans=(ans*Extended_Euclid(2*n,II))%II;//乘逆元
        }
        else
        {
            ans=(ans+n/2*gcdm[n/2]*(m+1)%II)%II;
            ans=(ans*Extended_Euclid(2*n,II))%II;//乘逆元
            //n/2*pow((double)m,n/2)+n/2*pow((double)m,n/2+1);
            //关于中线的对称         关于对角线的对称
        }
        ans=(ans+II)%II;//这个地方一定要加上
        printf("Case #%d: %d\n",++ci,ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值