问题描述:给定 n种物品和一背包,物品i的重量是wi,其价值是pi,背包的容量是M,问如何选择装入背包中的物品总价值最大?
同样,我们可以构建一个二维数组max用来存储结果。max[i][j]表示背包容量还剩j,有i个物品可装时,背包的最大价值。
package com.algorithm;
//动态规划解决01背包问题
/*
* 测试数据
* 背包最多能装10公斤物品,现有3件物品,
* 重量和价值分别为
* 3, 4
* 4, 5
* 5, 6
*/
public class Backpack_01 {
private static int capacity = 10;//背包容量
private static int num_items = 3;//物品数量
public static void main(String[] arg){
int[] weigth ={3,4,5};
int[] value ={4,5,6};
int[][] max = new int[num_items+1][capacity+1];
//initial array
for(int i=0;i<=num_items;i++){
for(int j=0;j<capacity;j++){
max[i][j]=0;
}
}
//
for(int i=1;i<=num_items;i++){
for(int j=1;j<=capacity;j++){
if(j<weigth[i-1]){
//当前物品装不下时,背包最大价值还是等于原来
max[i][j]=max[i-1][j];
}else{
//是否装当前物品,取决于两者间的最大价值
max[i][j]=Math.max(max[i-1][j-weigth[i-1]]+value[i-1], max[i-1][j]);
}
}
}
System.out.println("背包最大价值为: "+max[num_items][capacity]);
}
}