【ccf-csp 2021 12-1 序列查询】

博客探讨了一种序列查询问题,类似于在购物环境中根据预算快速查找最高价格商品的算法。通过给出的输入和输出样例,展示了如何利用数学公式和优化技巧高效计算序列查询的总和。解法中提到了Abel变换,并提供了简洁的C++代码实现,强调了避免遍历整个范围以提升算法效率。

**

ccf-csp 2021 12-1 序列查询

**

题目背景

西西艾弗岛的购物中心里店铺林立,商品琳琅满目。为了帮助游客根据自己的预算快速选择心仪的商品,IT 部门决定研发一套商品检索系统,支持对任意给定的预算 x,查询在该预算范围内(≤x)价格最高的商品。如果没有商品符合该预算要求,便向游客推荐可以免费领取的西西艾弗岛定制纪念品。

假设购物中心里有 n 件商品,价格从低到高依次为 A1,A2⋯An,则根据预算 x 检索商品的过程可以抽象为如下序列查询问题。

题目描述

A=[A0,A1,A2,⋯,An] 是一个由 n+1 个 [0,N) 范围内整数组成的序列,满足 0=A0<A1<A2<⋯<An<N。(这个定义中蕴含了 n 一定小于 N。)

基于序列 A,对于 [0,N) 范围内任意的整数 x,查询 f(x) 定义为:序列 A 中小于等于 x 的整数里最大的数的下标。具体来说有以下两种情况:

存在下标 0≤i<n 满足 Ai≤x<Ai+1
此时序列 A 中从 A0 到 Ai 均小于等于 x,其中最大的数为 Ai,其下标为 i,故 f(x)=i。

An≤x
此时序列 A 中所有的数都小于等于 x,其中最大的数为 An,故 f(x)=n。

令 sum(A) 表示 f(0) 到 f(N−1) 的总和,即:
sum(A)=∑i=0N−1f(i)=f(0)+f(1)+f(2)+⋯+f(N−1)

对于给定的序列 A,试计算 sum(A)。

输入格式

从标准输入读入数据。

输入的第一行包含空格分隔的两个正整数 n 和 N。

输入的第二行包含 n 个用空格分隔的整数 A1,A2,⋯,An。

注意 A0 固定为 0,因此输入数据中不包括 A0。

输出格式

输出到标准输出。

仅输出一个整数,表示 sum(A) 的值。

样例1输入

3 10
2 5 8

样例1输出

15

样例2输入

9 10
1 2 3 4 5 6 7 8 9

样例2输出

45

子任务

50% 的测试数据满足 1≤n≤200 且 n<N≤1000;

全部的测试数据满足 1≤n≤200 且 n<N≤107。

提示

若存在区间 [i,j) 满足 f(i)=f(i+1)=⋯=f(j−1),使用乘法运算 f(i)×(j−i) 代替将 f(i) 到 f(j−1) 逐个相加,或可大幅提高算法效率。

解法

#include <iostream>
using namespace std;
int main(int argc, const char * argv[]) {
    int n,N;
    cin>>n>>N;
    int sum=n*N;
    int a[n];
    for(int i=0;i<n;i++){
        cin>>a[i];
        sum-=a[i];
    }
    cout<<sum;
    return 0;
}

总结

其实写代码前就已经把公式推出来了,有点像高中数竞的Abel变换,解法不需要对N进行遍历。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值