矩阵分析复习

第三章

定理

  1. 酉矩阵: A A H = A H A = E AA^H=A^{H}A=E AAH=AHA=E,那么 A A A是酉矩阵。是正交矩阵 A T A = A A T = E A^TA=AA^T=E ATA=AAT=E的扩展。

  2. Hermite矩阵:也叫 H H H-阵, A H = A A^H=A AH=A,那么 A A A叫做Hermite矩阵。
    Hermite矩阵一定可以被酉变换为一个对角矩阵,且特征值均为实数。

  3. 正规矩阵: A A H = A H A AA^H=A^{H}A AAH=AHA,那么 A A A是正规矩阵。 H H H-阵,反 H H H-阵,正交矩阵,酉矩阵,对角矩阵全部都是正规矩阵。

  4. 有关正定矩阵的等价叙述:
    - f ( X ) f(X) f(X)是正定的
    - 对于任意n阶可逆矩阵 P P P都有 P H A P P^{H}AP PHAP为正定矩阵
    - A的n个特征值都大于零
    - 存在n阶可逆矩阵 P P P使得 P H A P = I P^{H}AP=I PHAP=I
    - 存在n阶可逆矩阵 Q Q Q使得 A = Q H Q A=Q^{H}Q A=QHQ
    - 存在正线上三角矩阵 R R R使得 A = R H R A=R^{H}R A=RHR且此分解唯一.

  5. 酉矩阵的行列式值为1,且所有特征值的模长为1,即 ∣ λ i ∣ = 1 |\lambda_i|=1 λi=1

  6. Hermite矩阵偶在复合同下的标准型:设 A , B A,B AB均为n阶Hermite-阵,且B是正定的。那么必存在 P ∈ C n n × n P\in C_{n}^{n\times n} PCnn×n使得
    P H A P = [ λ 1 λ 2 ⋱ λ n ] P^{H}AP= \left[ \begin{matrix} \lambda_1 &&&\\ &\lambda_2 \\ &&\ddots\\ &&&\lambda_n \\ \end{matrix} \right] PHAP=λ1λ2λn
    P H B P = I n × n P^HBP=I_{n\times n} PHBP=In×n同时成立,其中 λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn是与 P P P无关的实数。

  7. Rayleigh商:设 A A A为一个Hermite矩阵,那么我们称 R ( X ) = X H A X X H X , ( X ∈ C n , X ≠ 0 ) R(X)=\frac{X^HAX}{X^HX},(X\in C^n, X\ne 0) R(X)=XHXXHAX,(XCn,X̸=0)为Hermite矩阵 A A A的Rayleigh商。注意 X X X是一个n维向量。

题目

  1. 证明:设 A A A是一个正定的H-阵,且又是酉矩阵,则 A = I A=I A=I
  2. 已知矩阵
    (1) A = [ 3 0 8 3 − 1 6 − 2 0 − 5 ] A= \left[ \begin{matrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \\ \end{matrix} \right] \tag{1} A=332010865(1)
    试求酉矩阵 U U U使得 U H A U U^HAU UHAU为上三角矩阵.

第五章

定理

  1. Holder不等式:设 α = [ a 1 , a 2 , . . . , a n ] , β = [ b 1 , b 2 , . . . , b n ] ∈ C n \alpha =[a_1,a_2,...,a_n], \beta=[b_1,b_2,...,b_n]\in C^n α=[a1,a2,...,an],β=[b1,b2,...,bn]Cn

    ∑ i = 1 n ∣ a i b i ∣ ≤ ( ∑ i = 1 n ∣ a i ∣ p ) 1 / p ( ∑ i = 1 n ∣ b i ∣ q ) 1 / q \sum_{i=1}^{n}|a_ib_i|\leq(\sum_{i=1}^{n}|a_i|^p)^{1/p}(\sum_{i=1}^{n}|b_i|^q)^{1/q} i=1naibi(i=1naip)1/p(i=1nbiq)1/q
    其中 p > 1 , q > 1 p>1, q>1 p>1,q>1 1 / p + 1 / q = 1 1/p+1/q=1 1/p+1/q=1.
  2. 矩阵的Frobenious范数,表示为 ∣ ∣ A ∣ ∣ F ||A||_F AF。计算公式为
    ∣ ∣ A ∣ ∣ F = ( ∑ i = 1 m ∑ j = 1 n ∣ a i j ∣ 2 ) ( 1 / 2 ) ||A||_F=(\sum_{i=1}^{m}\sum_{j=1}^{n}|a_{ij}|^2)^{(1/2)} AF=(i=1mj=1naij2)(1/2) 即为矩阵中所有元素的平方和开根号。
  3. 诱导范数:列和范数,谱范数,行和范数
  4. 矩阵的谱半径:矩阵 A A A所有特征值中绝对值最大的就是矩阵 A A A的谱半径。
  5. 收敛与绝对收敛:绝对是指绝对值

题目

  1. 证明范数:非负性,齐次性,三角不等式,矩阵乘法相容性

第六章

定理

  1. Hamilton-Cayley定理:已知 A ∈ C n × n , f ( λ ) A\in C^{n\times n},f(\lambda) ACn×nf(λ)为其特征多项式,那么就有 f ( A ) = O n × n f(A)=O_{n\times n} f(A)=On×n
  2. 最小多项式:在 A A A的零化多项式中,次数最低且首项系数为 A A A的最小多项式,通常记为 m ( λ ) m(\lambda) m(λ)
  3. 矩阵函数 f ( A ) f(A) f(A)的Jordan表示

题目

  1. 给出多项式 f ( x ) f(x) f(x) 求矩阵函数 f ( A ) f(A) f(A)
  2. 求A的最小多项式 m ( λ ) m(\lambda) m(λ)
  3. 求矩阵函数 f ( A ) f(A) f(A)的Lagrange-Sylvester内插多项式表示:
    先由矩阵 A A A的最小多项式 Ψ A ( x ) \Psi_A(x) ΨA(x)写出 Φ 1 ( x ) , Φ 2 ( x ) , . . . Φ k ( x ) \Phi_1(x),\Phi_2(x),...\Phi_k(x) Φ1(x),Φ2(x),...Φk(x);然后再求出 a 11 , a 12 , . . . , a 1 d 1 ; a 21 , a 22 , a 2 d 2 ; a k 1 , a k 2 , a k d k a_{11},a_{12},...,a_{1d_1};a_{21},a_{22},a_{2d_2};a_{k1},a_{k2},a_{kd_k} a11,a12,...,a1d1a21,a22,a2d2ak1,ak2,akdk;最后写出插值多项式表示
    f ( A ) = ∑ k = 1 s [ a k 1 E + a k 2 ( A − λ k E ) + a k 3 ( A − λ k E ) 2 + . . . . . . + a k d k ( A − λ k E ) d k − 1 ] Φ k ( A ) f(A)=\sum_{k=1}^{s}[a_{k1}E+a_{k2}(A-\lambda_kE)+a_{k3}(A-\lambda_kE)^2+......+a_{kd_k}(A-\lambda_kE)^{d_k-1}]\Phi_k(A) f(A)=k=1s[ak1E+ak2(AλkE)+ak3(AλkE)2+......+akdk(AλkE)dk1]Φk(A)
    其中s是最小多项式中因子的数量。 d k ( 其 中 k = 1 , 2 , . . . , s ) d_k(其中k=1,2,...,s) dk(k=1,2,...,s)是每个因子的次数。
    也就是说每个因子都有 d k d_k dk个系数,就是说一共有 ∑ k = 1 s d k = m \sum_{k=1}^{s}d_k=m k=1sdk=m个系数
  4. 求矩阵函数 f ( A ) f(A) f(A)的多项式表示: p ( x ) p(x) p(x)比最小多项式低一阶。最小多项式的阶数 ∑ k = 1 s d k = m \sum_{k=1}^{s}d_k=m k=1sdk=m,那么 p ( x ) p(x) p(x)就是一个m-1阶多项式。
    先求出最小多项式 m ( x ) m(x) m(x)
    p ( k ) ( λ i ) = f ( k ) ( λ i ) p^(k)(\lambda_i)=f^(k)(\lambda_i) p(k)(λi)=f(k)(λi)(其中k表示k阶导数)将 p ( x ) p(x) p(x)的系数用 f ( k ) ( λ ) f^{(k)}(\lambda) f(k)(λ)表示
  5. 求矩阵函数的幂级数表示:
  • 5
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值