用一个大小为 m x n 的二维网格 grid 表示一个箱子。你有 n 颗球。箱子的顶部和底部都是开着的。
箱子中的每个单元格都有一个对角线挡板,跨过单元格的两个角,可以将球导向左侧或者右侧。
将球导向右侧的挡板跨过左上角和右下角,在网格中用 1 表示。
将球导向左侧的挡板跨过右上角和左下角,在网格中用 -1 表示。
在箱子每一列的顶端各放一颗球。每颗球都可能卡在箱子里或从底部掉出来。如果球恰好卡在两块挡板之间的 “V” 形图案,或者被一块挡导向到箱子的任意一侧边上,就会卡住。
返回一个大小为 n 的数组 answer ,其中 answer[i] 是球放在顶部的第 i 列后从底部掉出来的那一列对应的下标,如果球卡在盒子里,则返回 -1 。
输入:grid = [[1,1,1,-1,-1],[1,1,1,-1,-1],[-1,-1,-1,1,1],[1,1,1,1,-1],[-1,-1,-1,-1,-1]]
输出:[1,-1,-1,-1,-1]
解释:示例如图:
b0 球开始放在第 0 列上,最终从箱子底部第 1 列掉出。
b1 球开始放在第 1 列上,会卡在第 2、3 列和第 1 行之间的 "V" 形里。
b2 球开始放在第 2 列上,会卡在第 2、3 列和第 0 行之间的 "V" 形里。
b3 球开始放在第 3 列上,会卡在第 2、3 列和第 0 行之间的 "V" 形里。
b4 球开始放在第 4 列上,会卡在第 2、3 列和第 1 行之间的 "V" 形里。
class Solution {
public int[] findBall(int[][] grid) {
/*
任意第r行第c列的球[r-1,c-1],它能够继续运动的情况分为以下两种
boll[r-1,c-1]==1,球导向右侧:c-1<列数。且 boll[r-1][c]==1
boll[r-1,c-1]==-1,球导向左侧:c-1>0。且 boll[r-1][c-2]==-1
*/
int columns=grid[0].length;
int rows=grid.length;
int[] ans = new int[columns];
for(int c=0;c<columns;c++){
//对于每一列,开始进行分析
int col=c;
ans[c]=1;
for(int row=0;row<rows;row++){
if(grid[row][col]==1){
if(col>=columns-1 || grid[row][col+1]!=1){
//表明该球无法继续掉落
ans[c]=-1;
break;
}
col++;
}else{
if(col<=0 || grid[row][col-1]!=-1){
//表明该球无法继续掉落
ans[c]=-1;
break;
}
col--;
}
if(row==rows-1){
//表明最后一行的结果没有遇到break,能继续下落
ans[c] = col;
}
}
}
return ans;
}
}