java 实现并查集(模板)
首先什么是并查集?
在计算机科学中,并查集是一种树型的数据结构,用于处理一些不交集(Disjoint Sets)的合并及查询问题。有一个联合-查找算法(union-find algorithm)定义了两个用于此数据结构的操作:
- Find:确定元素属于哪一个子集。这个确定方法就是不断向上查找找到它的根节点,它可以被用来确定两个元素是否属于同一子集。
- Union:将两个子集合并成同一个集合。
并查集是一个很简单的数据结构,其基本思路围绕着一个就是根节点展开,若有两点的根节点相同那么就肯定在一棵树内,所以我们只需要维护一个点的父亲节点就好了,然后每次询问都查找根节点是否相同。
但这是一种最优的情况,若树退化成链的话,很明显,时间和空间直接拉满,怎样避免这种情况发生呢?我们上面说到,我们只需要判断两点和根节点的关系,那么我们只保留当前点的根节点关系不就好了?的确,这样就能够满足我们的问题了,这样的优化方式我们叫做路径压缩
这个说法比较官方下面说下我自己的理解:其实非常简单,这就是一个推理的过程,A->B,B->C=》A->C;
A是B的老师,B是C的老师,那么可以可以推理出A也是C的老师;所以我们直接让A的老师是C就可以了;简单给大家画个图;
通过这种方式就能大大的降低复杂度;
下面直接上模板代码:
class UnionFind{
int[] parent;// parent[i]表示i这个元素指向的父亲节点
int[] size;//size[i]表示以i为根节点的集合中元素个数
int n;//节点的个数,初始化每一个节点都是一个单独的连通分量
int setCount;//连通分量的数目
public UnionFind(int n){
this.size=new int[n];
this.parent=new int[n];
this.n=n;
this.setCount=n;
Arrays.fill(size,1);
for(int i=0;i<n;i++){
parent[i]=i;
}
}
public int find(int x){
return parent[x]==x?x:find(parent[x]);
}
public boolean unit(int x,int y){
x=find(x);
y=find(y);
if(x==y){
return false;
}
if(size[x]<size[y]){
int tem=x;
x=y;
y=tem;
}
parent[y]=x;
size[x]+=size[y];
--setCount;
return true;
}
public boolean connected(int x, int y) {
x = find(x);
y = find(y);
return x == y;
}
}