java实现并查集(模板)

并查集是一种树型数据结构,用于处理不交集的合并与查询。该结构包含Find和Union操作,用于判断元素所属子集及合并子集。通过路径压缩优化,能有效降低查询复杂度。博客提供了Java实现并查集的模板代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

java 实现并查集(模板)

首先什么是并查集?

在计算机科学中,并查集是一种树型的数据结构,用于处理一些不交集(Disjoint Sets)的合并及查询问题。有一个联合-查找算法union-find algorithm)定义了两个用于此数据结构的操作:

  • Find确定元素属于哪一个子集。这个确定方法就是不断向上查找找到它的根节点,它可以被用来确定两个元素是否属于同一子集
  • Union将两个子集合并成同一个集合

并查集是一个很简单的数据结构,其基本思路围绕着一个就是根节点展开,若有两点的根节点相同那么就肯定在一棵树内,所以我们只需要维护一个点的父亲节点就好了,然后每次询问都查找根节点是否相同。

但这是一种最优的情况,若树退化成链的话,很明显,时间和空间直接拉满,怎样避免这种情况发生呢?我们上面说到,我们只需要判断两点和根节点的关系,那么我们只保留当前点的根节点关系不就好了?的确,这样就能够满足我们的问题了,这样的优化方式我们叫做路径压缩

这个说法比较官方下面说下我自己的理解:其实非常简单,这就是一个推理的过程,A->B,B->C=》A->C;

A是B的老师,B是C的老师,那么可以可以推理出A也是C的老师;所以我们直接让A的老师是C就可以了;简单给大家画个图;

在这里插入图片描述

在这里插入图片描述

通过这种方式就能大大的降低复杂度;

下面直接上模板代码:
class UnionFind{
    int[] parent;// parent[i]表示i这个元素指向的父亲节点
    int[] size;//size[i]表示以i为根节点的集合中元素个数
    int n;//节点的个数,初始化每一个节点都是一个单独的连通分量
    int setCount;//连通分量的数目
    public UnionFind(int n){
        this.size=new int[n];
        this.parent=new int[n];
        this.n=n;
        this.setCount=n;
        Arrays.fill(size,1);
        for(int i=0;i<n;i++){
            parent[i]=i;
        }
    }

    public int find(int x){
        return parent[x]==x?x:find(parent[x]);
    }

    public boolean unit(int x,int y){
        x=find(x);
        y=find(y);
        if(x==y){
            return false;
        }
        if(size[x]<size[y]){
            int tem=x;
            x=y;
            y=tem;
        }

        parent[y]=x;
        size[x]+=size[y];
        --setCount;
        return true;
    }

    public boolean connected(int x, int y) {
        x = find(x);
        y = find(y);
        return x == y;
    }

}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值