关键词:TerraSight芯片、超宽光谱成像、低算力架构、异质叠层晶圆、自动驾驶感知
概要:TerraSight芯片作为全球首款专为无人驾驶设计的超宽光谱叠层图像传感芯片,通过超宽光谱成像技术实现全天候感知,具备极端环境适应性和材质识别能力。芯片采用低算力高效处理架构,降低系统功耗和成本。其异质叠层晶圆技术和车规级可靠性设计确保了芯片的高性能和稳定性。TerraSight为自动驾驶感知系统提供了颠覆性解决方案,不仅适用于车载场景,还可扩展至其他领域,标志着中国在高端传感器芯片领域的自主突破。
作为全球首款专为无人驾驶设计的超宽光谱叠层图像传感芯片,TerraSight通过多项突破性技术重构了自动驾驶感知系统的底层逻辑。以下从核心技术、架构创新及行业影响三个维度展开分析:
一、核心技术突破
-
超宽光谱成像技术
TerraSight覆盖可见光至远红外波段(0.4~14μm),光谱范围是传统摄像头的12倍以上。通过叠层结构设计,芯片在同一器件中集成多光谱传感器,避免了传统多传感器融合的物理矛盾(如时间同步、空间配准误差),实现单一芯片的全天候感知。- 极端环境适应性:在雨、雾、烟、霾等场景中,其穿透距离可达普通视觉芯片的50倍,且灵敏度低至0.0000001LUX(接近单光子探测水平),可在无光环境下工作。
- 材质识别能力:结合红外光谱特征,可区分玻璃、金属等不同材质(如矿场场景中识别抬玻璃的工人),显著提升环境语义理解精度。
-
温度等温线边缘增强技术
通过红外热成像与可见光的融合,芯片能提取物体边缘的温度梯度信息,解决传统视觉算法中物体与背景混淆的问题。例如,在逆光或阴影场景下,温度差异可辅助算法精准分割目标轮廓,使识别率和召回率提升30%以上。 -
低算力高效处理架构
芯片仅需30TOPS算力即可完成多光谱数据融合与感知决策,较传统方案(需百TOPS级算力)降低70%。其核心在于:- 硬件级特征提取:在传感器端完成边缘计算,仅输出关键语义信息(如物体类别、距离、材质),减少数据传输与处理负载。
- 动态范围压缩算法:240dB动态范围通过分段式ADC与自适应量化技术实现,避免高动态范围数据对算力的过度消耗。
二、架构创新与工艺实现
-
异质叠层晶圆技术
TerraSight采用晶圆级异质集成工艺,将不同光谱敏感度的探测器(如硅基可见光、InGaAs红外)堆叠为多层结构,通过硅通孔(TSV)实现信号互连。此技术需解决:- 热膨胀系数匹配:不同材料层在温度变化下的应力控制;
- 串扰抑制:通过电磁屏蔽层与光学隔离设计,降低光谱串扰至<0.1%。
-
车规级可靠性设计
- 温度等温线校准:芯片内置温度传感器阵列,实时补偿环境温度波动对光谱响应的影响,确保-40℃~105℃范围内的稳定性;
- 抗振动封装:采用陶瓷基板与柔性连接技术,通过MIL-STD-883标准振动测试。
-
量产测试方案
利扬芯片全资子公司光瞳芯提供独家晶圆级测试服务,包括:- 异质叠层完整性检测:通过X射线与声学显微镜验证层间对准精度;
- 光谱响应校准:基于黑体辐射源与标准光源的波长-响应曲线标定。
三、行业影响与技术趋势
-
自动驾驶感知范式革新
TerraSight通过“强感知弱算力”模式,挑战了传统“多传感器+高算力”的路径依赖。其单芯片方案可降低系统功耗40%、BOM成本30%,为L3+自动驾驶提供经济可行的落地方案。 -
多光谱融合的标准化探索
当前自动驾驶多依赖激光雷达与视觉的“后融合”算法,而TerraSight通过物理层面的光谱叠加,为“前融合”提供了硬件基础。未来或推动行业建立多光谱感知的统一数据接口标准。 -
RISC-V架构的潜在协同
结合《RISC-V 2030研究报告》趋势,TerraSight的异质计算需求可能推动RISC-V在车载边缘端的定制化发展。例如,通过开源指令集优化光谱数据处理流水线,降低对ARM架构的依赖。
四、应用场景与验证进展
- 矿场无人驾驶:在浓烟、粉尘环境下,TerraSight已实现矿卡自主避障与路径规划,穿透距离达50米(普通摄像头仅1米);
- 样车测试计划:2025年7月将启动大型卡车无人驾驶样车测试,验证高速场景下的实时感知能力。
总结
TerraSight芯片通过光谱融合、低算力架构与异质集成工艺,为自动驾驶感知系统提供了颠覆性解决方案。其技术路线不仅适用于车载场景,还可扩展至工业检测、安防监控等领域,标志着中国在高端传感器芯片领域的自主突破。未来需关注其量产良率、车规认证进度及生态适配能力。
——The END——
CSDN博客:https://blog.csdn.net/imewe
微信公众号:cnFuJH