Redis数据结构-字典

字典

Redis的数据库使用字典作为底层实现,对数据库的增删查改操作也是构建在字典的操作上的。字典也是哈希键的底层实现之一,当一个哈希键包含的键值对较多,或者键值对中的元素都是比较长的字符串时,Redis就使用字典作为哈希键的底层实现。

字典的实现

Redis的字典使用哈希表作为底层实现,一个哈希表里面可以有多个哈希表节点,而每个哈希表节点就保存了字典中的一个键值对。

  1. 哈希表:Redis字典使用的哈希表由dict.h/dictht结构定义:

    typedef  struct dictht{
        //哈希表数组,每个元素都是指向一个dictEntry结构的指针
        dictEntry **table;
        //哈希表大小
        unsigned long size;
        //哈希表大小掩码,用于计算索引值,总是等于size-1,和哈希值共同决定一个键被放在哪个索引上        
        unsigned long sizemask;
        //该哈希表已有节点的数量
        unsigned long used;
    }dictht;
  2. 哈希表节点:由dict.h/dictEntry结构表示,每个都保存着一个键值对:

    typedef sturct dictEntry{
        //键
        void *key;
        //值
        union{
            void *val;
            uint64_t u64;
            int64_t  s64;
        }v;
        //指向下一个哈希表节点,形成链表,将多个哈希值相同的键值对连接在一起,解决键冲突问题
        struct dictEntry *next;
    } dictEntry;
  3. 字典:由dict.h/dict结构表示:

    typedef struct dict{
        //类型特定函数
        dictType *type;
        //私有数据
        void *privdata;
        //哈希表
        dictht ht[2];
        //rehash索引,当rehash不在进行时,值为-1
        int rehashidx;
    } dict;

    type属性和privdata属性是针对不同类型的键值对,为创建多态字典而设置的。

    • type属性是指向dictType结构的指针,每个dictType结构保存了一簇用于操作特定类型键值对的函数
    • privdata则保存了需要传给那些类型特定函数的可选参数
    typedef struct dictType{
        unsigned int (*hashFunction)(const void *key);
        void *(*keyDup)(void *privdata, const void *key);
        void *(*valDup)(void *privdata,const void *obj);
        int (*keyCompare)(void *privdata,const void *key1,const void *key2);
        void (*keyDestructor)(void *privdata,void *key);
        void (*valDestructor)(void *privdata,void *obj);
    }dictType;

    ht属性是一个包含两个dictht哈希表。一般情况下,字典只使用ht[0]哈希表,ht[1]哈希表只会在对ht[0]哈希表进行rehash时使用。rehashidx记录了rehash进度,如果没有进行rehash,那么它的值为-1。

哈希算法

Redis计算哈希值和索引值的方法如下:

//使用字典设置的哈希函数,计算key的哈希值
hash = dict->type->hashFunction(key);
//使用哈希表的sizemash属性和哈希值计算出索引
//根据情况不同,ht[x]可以是ht[0]或者ht[1]
index = hash & dict->ht[x].sizemash;

当字典被用作数据库的底层实现,或者哈希键的底层实现时,Redis使用MurmurHash2算法来计算哈希值。

解决键冲突

Reis的哈希表采用链地址法来解决键冲突,每个哈希表节点都有一个next指针,多个哈希表节点可以用next指针构成一个单向链表,被分配到同一个索引上的节点可以用单向链表连接起来,解决键冲突问题。为了速度考虑,程序总将新的节点添加到表头(复杂度O(1))。

rehash

为了使哈希表的负载因子维持一个合理范围,当哈希表保存的键值对数量太多或者太少时,程序对哈希表进行相应地扩展或者收缩。

  • 为字典的ht[1]哈希表分配空间,这个哈希表的空间大小取决于要执行的操作,以及ht[0]当前包含的键值对数量

    • 如果执行的是扩展操作,那么ht[1]的大小为第一个大于等于ht[0].used*2的2^n
    • 如果执行的是收缩操作,那么ht[1]的大小为第一个大于等于ht[0].used的2^n
  • 将保存在ht[0]中的所有键值对rehash到ht[1]上面:rehash指的是重新计算键的hash值和索引值,然后将键值对放在ht[1]的指定位置上

  • 当ht[0]包含的所有键值对都迁移到了ht[1]后,释放ht[0],将ht[1]设置为ht[0],并在ht[1]新创建一个空白哈希表,为下一次rehash做准备

哈希表扩展与收缩的条件:

当一下任意条件满足时,程序自动执行扩展操作:

  • 服务器目前没有执行BGSAVE 或者 BGREWRITEAOF 命令,并且哈希表的负载因子大于等于1
  • 服务器目前正在执行 BGSAVE 或者 BGREWRITEAOF 命令,并且哈希表的负载因子大于等于5

哈希表负载因子计算方法:

load_factor = ht[0].used / ht[0].size

根据BGSAVE 或者 BGREWRITEAOF 命令是否在执行,服务器执行扩展操作所需的负载因子不相同,因为执行这两条命令时,Redis需要创建子进程,而大多数操作系统采用写时复制技术优化子进程使用效率,所以子进程存在期间服务器提高执行扩展操作所必须的负载因子,从而尽可能的避免在子进程存在期间进行哈希表扩展操作,可以避免不必要的内存写入操作,最大限度解约内存。
另一方面,当哈希表的负载因子小于0.1时,程序自动执行收缩操作

渐进式rehash

rehash动作是分多次、渐进性的完成的,目的是防止size非常巨大的哈希表一次性rehash造成的庞大计算量导致服务器一段时间停止服务。哈希表渐进式rehash的步骤:

  • 为ht[1]分配空间,让字典同时持有ht[0]和ht[1]两个哈希表
  • 在字典中维持一个索引计数器rehashidx,将它设置为0,表示rehash正式开始
  • 在执行rehash期间,每次对字典执行添加、删除、查找或者更新操作时,程序还会顺带将ht[0]哈希表在rehashidx索引上的所有键值对rehash到ht[1]上,当rehash完成后,rehashidx的值加1
  • 随着字典操作不断执行,最终在某个时间点,ht[0]的所有键值对都被rehash到ht[1],当rehash完成时,rehashidx的值设置为-1,表示rehash操作完成

渐进式rehash操作采用分而治之的方式,将rehash键值对所需的计算工作均摊到每次对字典的操作上,从而避免集中式rehash带来的庞大运算量。

渐进式rehash执行期间的哈希表操作

由于在渐进式rehash进行过程中,字典同时使用ht[0]和ht[1]两个哈希表,所以字典的删除、查找、更新等操作会在两个哈希表执行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值