归并排序是分治思想的一个很好的例子。它比希尔排序在时间复杂度上更优,为NlogN,并且属于稳定排序方法(稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,ri=rj,且ri在rj之前,而在排序后的序列中,ri仍在rj之前,则称这种排序算法是稳定的;否则称为不稳定的)。
自上而下的归并排序思想是,依赖于递归,逐级将待排序对象分割为较小的集合,直到这个集合只剩下一个元素,最后再归并每两个集合,排序的动作就发生在这个归并(merge)的时候。一分一合之间,集合就被排序了。
public class MergeSort {
private Comparable[] aux;
public void sort(Comparable[] a){
aux = new Comparable[a.length];
sort(a,0,a.length-1);
}
private void sort(Comparable[] a,int lo,int hi) {
if(hi<=lo) return;
int mid = lo + (hi - lo)/2;//将数组一分为二
sort(a,lo,mid);//分别对这两个子数组进行排序
sort(a,mid + 1,hi);
merge(a,lo,mid,hi);//合并两个已经排序的数组
}
private void merge(Comparable[] a,int lo,int mid,int hi){
int i = lo;
int j = mid + 1;
for(int k = lo;k<=hi;k++){//将待排序数组全部复制到临时数组中
aux[k] = a[k];
}
for(int k = lo;k<=hi;k++){//从临时数组中拿回到排序数组中
if(i>mid) a[k] = aux[j++];//左边数组已经没有元素可拿了,拿右边数组元素
else if(j>hi) a[k] = aux[i++];//右边数组已经没有元素可拿了,拿左边边数组元素
else if(less(aux[i],aux[j])) a[k] = aux[i++];//谁小拿谁
else a[k] = aux[j++];
}
}
private boolean less(Comparable a, Comparable b) {
return a.compareTo(b)<0;
}
public static void main(String[] args) {
int size = 3000000;
Integer[] a = RandomFactory.randomInt(size,40000);
MergeSort sort = new MergeSort();
//sort.show(a);
long t = System.currentTimeMillis();
sort.sort(a);
t = System.currentTimeMillis() -t;
//sort.show(a);
System.out.println("Insert sort");
System.out.println("time:" + t);
System.out.println("random data size : " + size);
}
private void show(Comparable[] a) {
int i = 0;
for(Comparable c : a){
System.out.print(c+" ");
i++;
if(i%20==0){
System.out.println();
}
}
System.out.println();
}
}
测试结果显示,同样是对300万测试数据进行排序,归并排序较希尔排序时间上有明显的优势:
Merge sort
time:2068
random data size : 3000000
Shell sort
time:7075
random data size : 3000000