排序算法之归并排序

归并排序是分治思想的一个很好的例子。它比希尔排序在时间复杂度上更优,为NlogN,并且属于稳定排序方法(稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,ri=rj,且ri在rj之前,而在排序后的序列中,ri仍在rj之前,则称这种排序算法是稳定的;否则称为不稳定的)。

自上而下的归并排序思想是,依赖于递归,逐级将待排序对象分割为较小的集合,直到这个集合只剩下一个元素,最后再归并每两个集合,排序的动作就发生在这个归并(merge)的时候。一分一合之间,集合就被排序了。

public class MergeSort {
	
	private Comparable[] aux;
	
	public void sort(Comparable[] a){
		aux = new Comparable[a.length];
		sort(a,0,a.length-1);
	}
	

	private void sort(Comparable[] a,int lo,int hi) {
		if(hi<=lo) return;
		int mid = lo + (hi - lo)/2;//将数组一分为二
		sort(a,lo,mid);//分别对这两个子数组进行排序
		sort(a,mid + 1,hi);
		merge(a,lo,mid,hi);//合并两个已经排序的数组
	}
	
	private void merge(Comparable[] a,int lo,int mid,int hi){
		int i = lo;
		int j = mid + 1;
		for(int k = lo;k<=hi;k++){//将待排序数组全部复制到临时数组中
			aux[k] = a[k];
		}
		for(int k = lo;k<=hi;k++){//从临时数组中拿回到排序数组中
			if(i>mid) a[k] = aux[j++];//左边数组已经没有元素可拿了,拿右边数组元素
			else if(j>hi) a[k] = aux[i++];//右边数组已经没有元素可拿了,拿左边边数组元素
			else if(less(aux[i],aux[j])) a[k] = aux[i++];//谁小拿谁
			else a[k] = aux[j++];
		}
	}

	private boolean less(Comparable a, Comparable b) {
		return a.compareTo(b)<0;
	}

	public static void main(String[] args) {
		int size = 3000000;
		Integer[] a = RandomFactory.randomInt(size,40000);
		
		MergeSort sort = new MergeSort();
		//sort.show(a);
		long t = System.currentTimeMillis();
		sort.sort(a);
		t = System.currentTimeMillis() -t;
		//sort.show(a);
		
		System.out.println("Insert sort");
		System.out.println("time:" + t);
		System.out.println("random data size : " + size);
	}


	private void show(Comparable[] a) {
		int i = 0;
		for(Comparable c : a){
			System.out.print(c+" ");
			i++;
			if(i%20==0){
				System.out.println();
			}
		}
		System.out.println();
	}
	
}

测试结果显示,同样是对300万测试数据进行排序,归并排序较希尔排序时间上有明显的优势:

Merge sort
time:2068
random data size : 3000000
Shell sort
time:7075
random data size : 3000000



归并排序(Merge Sort)是一种稳定的、基于比较的排序算法,最坏时间复杂度为 O(nlogn)。其基本思想是将待排序序列分成若干个子序列,每个子序列都是有序的,然后将子序列合并成整体有序的序列。 归并排序的实现方法有两种:自顶向下和自底向上。 自顶向下的归并排序算法实现: 1. 将待排序序列分成两个子序列,分别对这两个子序列进行递归排序。 2. 将两个已经排好序的子序列合并为一个有序序列。 自底向上的归并排序算法实现: 1. 将待排序序列每个元素看成一个独立的有序序列,进行两两合并。 2. 得到 n/2 个长度为 2 的有序序列,再两两合并。 3. 重复步骤 2,直到得到一个长度为 n 的有序序列。 下面是自顶向下的归并排序算法的实现代码(使用了递归): ``` void MergeSort(int arr[], int left, int right) { if (left >= right) return; int mid = left + (right - left) / 2; MergeSort(arr, left, mid); MergeSort(arr, mid + 1, right); int* temp = new int[right - left + 1]; int i = left, j = mid + 1, k = 0; while (i <= mid && j <= right) { if (arr[i] <= arr[j]) temp[k++] = arr[i++]; else temp[k++] = arr[j++]; } while (i <= mid) temp[k++] = arr[i++]; while (j <= right) temp[k++] = arr[j++]; for (int p = 0; p < k; p++) arr[left + p] = temp[p]; delete[] temp; } ``` 下面是自底向上的归并排序算法的实现代码(使用了迭代): ``` void MergeSort(int arr[], int n) { int* temp = new int[n]; for (int len = 1; len < n; len *= 2) { for (int left = 0; left < n - len; left += len * 2) { int mid = left + len - 1; int right = min(left + len * 2 - 1, n - 1); int i = left, j = mid + 1, k = 0; while (i <= mid && j <= right) { if (arr[i] <= arr[j]) temp[k++] = arr[i++]; else temp[k++] = arr[j++]; } while (i <= mid) temp[k++] = arr[i++]; while (j <= right) temp[k++] = arr[j++]; for (int p = 0; p < k; p++) arr[left + p] = temp[p]; } } delete[] temp; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值