[Leetcode16]最接近的三数之和

本文介绍了如何利用排序和双指针策略解决LeetCode上的第16题,即寻找数组中三个数的和最接近目标值的方法。首先对数组进行排序,然后通过一个外层循环固定一个数,用两个指针从两侧向中间搜索,不断调整指针位置以找到最接近目标和的三数组合。在遍历过程中,优化了重复元素的处理和提前结束搜索的条件,以提高效率。
摘要由CSDN通过智能技术生成

[Leetcode16]最接近的三数之和

转载自leetcode
https://leetcode-cn.com/problems/3sum-closest/

1.题目

给定一个包括 n 个整数的数组 nums 和 一个目标值 target。找出 nums 中的三个整数,使得它们的和与 target 最接近。返回这三个数的和。假定每组输入只存在唯一答案。

2.解题思路

这是一道数组搜索题,需要找到满足题意的三个整数,并返回他们的和。

分析:

idea1. 如果使用暴力遍历,显然需要三重循环,是不可取的。

idea2. 数组搜索常常可以使用左右指针加快搜索速度。通常使用双指针搜索会先对数据进行一次排序。

解题步骤:

step1. qsort排序

step2. 假设输出应该是sum = nums[a] + nums[left] + nums[right],升序遍历a,搜索在每个a下双指针最优解

step3. 令左指针left = a+1, 右指针right = numsSize - 1。比较当前sum和target关系。

step4. 当sum小于target时,需要增加左指针 left++,当sum大于target时,需要减少右指针right--,继续遍历

step5. 双指针搜索终止条件 left >= right。此时sum有当前a下最优解。重复 step 2 - 4。

step6. 遍历a 从 0 至 numsSize - 1。输出最优解sum

优化:

该题在解题步骤上应该有很多优化思路:

例如,遇到sum = target时,直接退出遍历。

例如,遇到相同数据时候可以跳过判断,减少遍历次数。

例如,当a + right 和target差大于sum和target差时,可以退出遍历。

可信:

(针对于存在数据溢出风险的代码来说),由于res需要初始化为 INT_MAX = 2^31 - 1。因此计算时需要定义为long型

3.算法

排序 + 双指针

4.C代码

int cmp(const void *a, const void *b) {
    return *(int *)a - *(int *)b;
}

long get_abs(long num)
{
    return (num > 0) ? num : (0 - num);
}

int threeSumClosest(int* nums, int numsSize, int target){

    qsort(nums, numsSize, sizeof(nums[0]), cmp);

    int a = 0, b = 1, c = numsSize - 1;
    long int sum;
    long int res = INT_MAX;
    
    if (numsSize == 3)
        return nums[a] + nums[b] + nums[c];
    
    for (a = 0; a < numsSize - 2; a++) {
        if (a > 0 && nums[a] == nums[a - 1])
            continue;
        
        b = a + 1;
        c = numsSize - 1;

        while (b < c) {
            sum = nums[a] + nums[b] + nums[c];
            
            if (sum < target) {
                res = (get_abs(res - target) < get_abs(sum - target)) ? res : sum;
                while (b < c && nums[b] == nums[++b]); 
                //b++;
            }
            else if (sum > target) {
                res = (get_abs(res - target) < get_abs(sum - target)) ? res : sum;
                while (b < c && nums[c] == nums[--c]);
                //c--;
            }
            else {
                return sum;
            }

        }
    }

    return res;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值