ZOJ-1016-Parencodings

本文介绍了一种通过生成括号序列并计算闭合括号数量的算法实现方法,使用1和-1分别表示左括号和右括号,通过逆向累加的方式找到闭合括号的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这道题很简单,不过见过有人真的生成一个括号序列然后数的,实在没必要

我将左括号存1,右括号存-1,这样从右往左加,一旦和0说明已经闭合 ,其他很简单,没什么说的

就是这道题的输入输出方法是一次性全部输入存储,然后才计算,后来的题就改成输入一条算一条了,只是做这道题的时候不太晓得罢了,不同比赛中的题目输入输出要求的习惯也不太一样。

 

#include <iostream>
using namespace std;

void Getwseq(int n, int p[])
{    
    
int i;
    
int w[21];//目标w序列
    int flag = 0, countw,sum,start;//标志

    
int sign[41];//1,-1序列,1--(左括号,-1--)右括号
    for(i=0;i<41;i++)
    {
        sign[i] 
= 1;
    }

    
int pos[21];//每个右括号的位置

    w[
1= 1;

//产生由1,-1表示的s序列
    pos[1= p[1+ 1;
    sign[pos[
1]] = -1;
    
for(i=2;i<=n;i++)
    {
        flag 
= p[i]-p[i-1];
        pos[i] 
= flag + pos[i-1+ 1;
        sign[pos[i]] 
= -1;
    }

//按位计算w序列
    for(i=2;i<=n;i++)
    {
        sum 
= 0;    
        countw 
= 0;
        start 
= pos[i];
        
do
        {            
            sum 
+= sign[start];
            
if(-1 == sign[start])
                countw
++;
            start
--;
        }
        
while(sum!=0);

        w[i] 
= countw;
    }
    
//输出w序列    
    for(i=1;i<=n-1;i++)
    {
        cout 
<< w[i] << " ";
    }
    cout 
<< w[n];
}

int main()
{
    
int t=0;//single integer t (1 <= t <= 10), the number of test cases
    int n[11];//n (1 <= n <= 20)
    int pseq[11][21];//pseq[i]存储第i组P序列数据
    int i,j;

//初始化数组为全0    
    for(i=0;i<=10;i++)
    {
        n[i] 
= 0;
        
for(j=0;j<=20;j++)
        {
            pseq[i][j] 
= 0;
        }
    }
    
//录入数据
    cin >> t;
    
for(i=1;i<=t;i++)
    {
        cin 
>> n[i];
        
for(j=1;j<=n[i];j++)
        {
            cin 
>> pseq[i][j];
        }
    }

//计算W序列
    for(i=1;i<=t;i++)
    {
        Getwseq(n[i],pseq[i]);
        cout 
<< endl;
    }

    
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值