Python

1.shape

直接用.shape可以快速读取矩阵的形状,使用shape[0]读取矩阵第一维度的长度

2. hstack()函数
函数原型:hstack(tup) ,参数tup可以是元组,列表,或者numpy数组,返回结果为numpy的数组。看下面的代码体会它的含义

其实就是水平(按列顺序)把数组给堆叠起来,vstack()函数正好和它相反。

import numpy as np
a=[1,2,3]
b=[4,5,6]
print(np.hstack((a,b)))

输出:[1 2 3 4 5 6 ]
import numpy as np
a=[[1],[2],[3]]
b=[[1],[2],[3]]
c=[[1],[2],[3]]
d=[[1],[2],[3]]
print(np.hstack((a,b,c,d)))

输出:
[[1 1 1 1]
 [2 2 2 2]
 [3 3 3 3]]

3.reshape

numpy中reshape函数的三种常见相关用法

reshape(1,-1)转化成1行:

reshape(2,-1)转换成两行:

reshape(-1,1)转换成1列:

reshape(-1,2)转化成两列

np.arange(16).reshape(2,8) #生成16个自然数,以2行8列的形式显示
# Out: 
# array([[ 0,  1,  2,  3,  4,  5,  6,  7],
#       [ 8,  9, 10, 11, 12, 13, 14, 15]])

4.delete

1.删除一列

>>> dataset=[[1,2,3],[2,3,4],[4,5,6]]

>>> import numpy as np

>>> dataset = np.delete(dataset, -1, axis=1)

>>> dataset

array([[1, 2],

[2, 3],

[4, 5]])

2.删除多列

arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

np.delete(arr, [1,2], axis=1)

array([[ 1, 4],

[ 5, 8],

[ 9, 12]])

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值