Jetson Copilot测评:基于Jetson Orin 64GB探索Llama3及RAG应用

前言


最新发布的Jetson Copilot已经引起了广泛关注,通过本文基于Jetson Orin 64GB平台的测评,我们将全面了解Jetson Copilot的功能和性能,以及其在实际应用中的潜力。我们将指导您完成从安装到启动的每一步,并体验其与llama3 8b模型的互动,以及如何利用预先构建的索引进行高效提问。


安装与启动


为了开始使用Jetson Copilot,首先需要从GitHub克隆其代码仓库:

git clone https://github.com/NVIDIA-AI-IOT/jetson-copilot/
cd jetson-copilot
./setup_environment.sh

./launch_jetson_copilot.sh

执行上述命令后,Jetson Copilot将在Docker容器内启动Ollama服务器和Streamlit应用程序。通过控制台输出的URL,您可以访问Jetson上托管的Web应用程序。

在Jetson上,您可以使用Web浏览器打开本地URL(http://localhost:8501)来访问应用程序。如果您在与Jetson连接的同一网络上使用PC,也可以通过网络URL访问。




和llama3 8b互动(Jetson Orin 启用50W功耗模式)


Jetson Copilot暂时只支持llama3 8b模型,由于加载模型,第一次对话速度较慢,之后的对话速度大约在13 tokens/s。

演示视频:可前往原文了解

RAG


使用预先构建的索引向 Copilot 提问相关问题


Copilot的示例为一个Jetson Orin的操作文档,通过演示视频可见,Copilot从索引文档中搜索和生成内容的时间大约为26秒。

演示视频: 可前往原文了解

根据您的文档建立自己的索引并提问


将DFRobot商城的LattePanda Mu产品网页内容作为索引文档使用:

Jetson Copilot测评:基于Jetson Orin 64GB探索Llama3及RAG应用图1


此外,Jetson Copilot暂时只支持mxbai-embed-large嵌入模型。mxbai-embed-large是一个先进的嵌入模型,截至2024年3月,它在MTEB(大规模文本嵌入基准测试)上取得了最佳性能,超过了Bert-large大小的模型。它使用了对比训练和AnglE损失函数进行微调,使其能够适应广泛的题材和领域,适合于各种实际应用和检索增强生成(RAG)用例。
在处理数据时,Jetson Copilot使用Chunk size将数据集分割成小块,并使用Chunk overlap来确保分割的数据块之间保持一定的重叠,以减少边缘效应。

生成的文件夹会在jetson-copilot/index文件夹下:

Jetson Copilot测评:基于Jetson Orin 64GB探索Llama3及RAG应用图4


测试用多条网址仍然可以生成索引文档:

您还可以选择使用OpenAI的嵌入模型来生成索引文件:

结论


Jetson Copilot,基于NVIDIA Jetson Orin的先进工具,提供了一种简便的命令行启动方式。
Llama3探索场景:
目前,它专为llama3 8b模型优化,确保了流畅的对话体验,每秒可处理大约13个token。
使用llama3构建的RAG应用:
此外,它还支持采用mxbai-embed-large模型进行高效的索引创建。在数据处理方面,用户可以灵活调整数据块的Chunk size和Chunk overlap,以优化数据分割并减少信息丢失。Jetson Copilot还允许用户利用OpenAI的嵌入模型来构建索引文件,从而进一步丰富其功能。从索引文档中检索和生成内容的过程大约需时26秒,实际输出的token速度也为13 tokens/s。Jetson Copilot是一款功能全面、操作简便的工具,非常适合于多样化的实际应用场景以及检索增强生成(RAG)任务。
不同框架表现比较
在使用MLC/TVM框架的情况下,不同大型语言模型在Jetson Orin上的表现也有所不同,可以看出MLC/TVM框架下使用Llama3-8B模型在Jetson AGX Orin上文本生成率达到40 tokens/s

常见问题解决


1、无法打开localhost,解决方法:给docker权限

sudo usermod -aG docker root
sudo reboot

2、网络报错,解决方法:重新联网并启动

参考


1、代码仓库:GitHub - NVIDIA-AI-IOT/jetson-copilot: A reference application for a local AI assistant with LLM and RAG
 

原文链接:Jetson Copilot测评:基于Jetson Orin 64GB探索Llama3及RAG应用

延伸阅读:NVIDIA Jetson Nano 2GB 系列文章(59):视觉类的数据增强 

NVIDIA Jetson Nano 2GB系列文章(64):将模型部署到Jetson设备

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值