连续子数组最大和

25 篇文章 0 订阅

对于其中的测试用例:{-5,3,2,-1,4,-3};

arr-532-14-3
sum_index38534-3
sum_max_index444445

sum_max[i]代表i开头的所有子数组的最大累加和
sum_max_index[i]取得最大累加和的右边界;i为左边界
如sum_index[2] = 5, 表示从2开始的最大子数组的累加和的右边界为4,即 i 和 sum_max_index[i] 分别代表最大子数组的左右边界;这两个数组是从右往左依次获取。

#include<iostream>
using namespace std;

int MaxSubsequence(int *arr, int n){
    int *sum_max = new int[n];      //sum_max[i]代表i开头的所有子数组的最大累加和
    int *sum_max_index = new int[n];//sum_max_index[i]取得最大累加和的右边界;i为左边界
    sum_max[n - 1] = arr[n - 1];
    sum_max_index[n - 1] = n - 1;

    for(int i = n - 2; i >= 0; i --){
        if(sum_max[i + 1] > 0){
            sum_max[i] = sum_max[i + 1] + arr[i];
            sum_max_index[i] = sum_max_index[i + 1];
        }
        else{
            sum_max[i] = arr[i];
            sum_max_index[i] = i;
        }
    }

    //从sum_max中得出连续子数组的最大和
    int max = INT_MIN;
    int index = 0;
    for(int k = 0; k < n; k ++){
        if(max < sum_max[k]){
            max = sum_max[k];
            index = k;//记录取max时左边界对应的位置
        }
    }

    //打印出最大连续子数组
    for(int s = index; s <= sum_max_index[index]; s ++){
        cout<<arr[s]<<" ";
    }
    cout<<endl;
    return max;
}

int main()
{
    int arr[6] = {-5,3,2,-1,4,-3};
    cout<<MaxSubsequence(arr, 6)<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值