对于其中的测试用例:{-5,3,2,-1,4,-3};
arr | -5 | 3 | 2 | -1 | 4 | -3 |
---|---|---|---|---|---|---|
sum_index | 3 | 8 | 5 | 3 | 4 | -3 |
sum_max_index | 4 | 4 | 4 | 4 | 4 | 5 |
sum_max[i]代表i开头的所有子数组的最大累加和
sum_max_index[i]取得最大累加和的右边界;i为左边界
如sum_index[2] = 5, 表示从2开始的最大子数组的累加和的右边界为4,即 i 和 sum_max_index[i] 分别代表最大子数组的左右边界;这两个数组是从右往左依次获取。
#include<iostream>
using namespace std;
int MaxSubsequence(int *arr, int n){
int *sum_max = new int[n]; //sum_max[i]代表i开头的所有子数组的最大累加和
int *sum_max_index = new int[n];//sum_max_index[i]取得最大累加和的右边界;i为左边界
sum_max[n - 1] = arr[n - 1];
sum_max_index[n - 1] = n - 1;
for(int i = n - 2; i >= 0; i --){
if(sum_max[i + 1] > 0){
sum_max[i] = sum_max[i + 1] + arr[i];
sum_max_index[i] = sum_max_index[i + 1];
}
else{
sum_max[i] = arr[i];
sum_max_index[i] = i;
}
}
//从sum_max中得出连续子数组的最大和
int max = INT_MIN;
int index = 0;
for(int k = 0; k < n; k ++){
if(max < sum_max[k]){
max = sum_max[k];
index = k;//记录取max时左边界对应的位置
}
}
//打印出最大连续子数组
for(int s = index; s <= sum_max_index[index]; s ++){
cout<<arr[s]<<" ";
}
cout<<endl;
return max;
}
int main()
{
int arr[6] = {-5,3,2,-1,4,-3};
cout<<MaxSubsequence(arr, 6)<<endl;
return 0;
}