lintcode254——Drop eggs(动态规划)

25 篇文章 0 订阅

经典动态规划,lintcode上通过69% ,复杂度高,对于大数无法通过
时间复杂度:O(mn^2); m为鸡蛋数,n为楼层数
空间复杂度:O(mn)

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;

//鸡蛋数为2个
int dropEggs(int n) {
    if(n <= 0)
        return -1;
    int **dp = new int *[3];//n层楼,两个鸡蛋,生成3*(n+1)数组
    for(int i = 0;i < 3; i ++){
        dp[i] = new int[n + 1];
    }
    //楼层小于1时,则可初始化为0或者1
    for(int i = 1; i < 3; i ++){
        dp[i][0] = 0;
        dp[i][1] = 1;
    }
    //只有一个鸡蛋时,必须尝试n次(即有多少层楼,最多尝试次数为多少次)
    for(int j = 1; j < n + 1; j ++){
        dp[1][j] = j;
    }
    for(int i = 2; i < 3; i ++){//鸡蛋数
        for(int j = 2; j <= n; j ++){//楼层数
            dp[i][j] = INT_MAX;
            for(int k = 1; k <= j; k ++){
                int res = dp[i - 1][k - 1] > dp[i][j - k] ? (1 + dp[i - 1][k - 1]) : (1 + dp[i][j - k]);
                if(res < dp[i][j])
                    dp[i][j] = res;
            }
        }
    }
    return dp[2][n];
}

int main(){
    cout<<dropEggs(10000007)<<endl;
    return 0;
}

递归法:大数始终无法通过

class Solution {
public:
    int dropEggs(int floors) {
        int times = 1;
        while(DroppingMax(2, times) < floors){  
            ++times;  
        }  
        return times; 
    }

    int DroppingMax( int eggs, int  times){  
        if(eggs == 1){  
            return times;  
        }
        if(eggs >= times){  
            return (int)pow(2, times) - 1;  
        }  
        return DroppingMax(eggs, times -1) + DroppingMax(eggs -1, times - 1) + 1;  
    }  
};

公式法:解方程x*(x+1)/2 = n,大数可通过
测试用例:2147483647
输出:65536

#include<iostream>
using namespace std;
class Solution {
public:
    int dropEggs(int floors) {
        if(floors == 0 || floors == 1)
            return floors;
        long long i = 1;
        while(i){
            if(i * (i + 1) / 2 >= floors)
                return i;
            i ++;
        }
    }
};

int main(){
    Solution s;
    cout<<s.dropEggs(2147483647)<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值