置信规则库推理

本文介绍了使用LiuEBRBClassifier对新data.csv数据进行预处理、特征划分后,进行模型训练和测试的过程。通过train_test_split将数据集划分为训练集和测试集,然后使用LiuEBRBClassifier进行训练,并计算预测准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from sklearn.metrics import accuracy_score, f1_score, recall_score, precision_score
from sklearn.model_selection import KFold, train_test_split

from liu_ebrb import LiuEBRBClassifier

from process_data import process_to_pieces
import random
import pandas as pd
from random_process import random_array


df = pd.read_csv('newdata.csv', names=[' HR', ' PULSE', ' RESP', ' SpO2', 'Class'])
X = df.drop(['Class'], axis=1).values
y = df["Class"].values
A, D = process_to_pieces(X, y, 3, 4)


ebrb = LiuEBRBClassifier(A, D)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)

print(X_train)

ebrb = ebrb.fit(X_train,  y_train)

y_predict = ebrb.predict(X_test)
print(y_predict)
print(accuracy_score(y_predict, y_test))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值