注:本文是作者学习周福才、徐剑《格理论与密码学》所做,仅供学习交流,转载请注明出处。
数学基础1
定义1.1 设a, b是整数,b≠0。若存在整数c,满足a=bc,则称b整除a或a被b整除,记为b|a。
命题:若a, b, c∈Z,且a|b,a|c,则a|(b+c)且a|(b-c)。
定义1.2 最大公因子是满足d|a,d|b的最大的正整数d,用gcd(a, b)来表示。
定理(扩展的欧几里得算法)设a, b是正整数,存在u, v满足 au+bv=gcd(a,b)。
模运算
定义1.3 设m为自然数,a和b是任意整数,如存在关系a=b+km,其中k为整数,则定义a≡b(modm),其含义为:b是a除以m的余数(b为a模m的余数,或a与b模m同余)。
例如:(7+8)mod12=15mod12=3,也可以表示成:15≡3(mod12)
模运算(+,-,*)满足交换律、结合律和分配率。
命题 设整数m≥1,则有<