《格理论与密码学》学习笔记(一)

本文介绍了《格理论与密码学》中的数学基础知识,包括最大公因子(gcd)的定义、扩展的欧几里得算法,以及模运算的概念和性质。重点阐述了模运算的交换律、结合律和分配率,并探讨了模逆元的存在条件,特别是当gcd(a, m)=1时,a存在模m的乘法逆元。同时,定义了欧拉函数Φ(m),用于计算整数模m单位群的元素个数。" 53672278,5776930,Python使用matplotlib和psutil监控CPU性能,"['Python', '数据可视化', '性能监控', 'Linux']
摘要由CSDN通过智能技术生成

注:本文是作者学习周福才、徐剑《格理论与密码学》所做,仅供学习交流,转载请注明出处。

数学基础1

定义1.1 设a, b是整数,b≠0。若存在整数c,满足a=bc,则称b整除a或a被b整除,记为b|a。

    命题:若a, b, c∈Z,且a|b,a|c,则a|(b+c)且a|(b-c)。

定义1.2 最大公因子是满足d|a,d|b的最大的正整数d,用gcd(a, b)来表示。

定理(扩展的欧几里得算法)设a, b是正整数,存在u, v满足 au+bv=gcd(a,b)。


模运算

定义1.3 设m为自然数,a和b是任意整数,如存在关系a=b+km,其中k为整数,则定义a≡b(modm),其含义为:b是a除以m的余数(b为a模m的余数,或a与b模m同余)。

例如:(7+8)mod12=15mod12=3,也可以表示成:15≡3(mod12)

模运算(+,-,*)满足交换律、结合律和分配率。

命题 设整数m≥1,则有<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值