最多约数问题

本文探讨了最多约数问题,介绍了如何找出在给定范围内约数个数最多的正整数及其个数。文章提出了两种方法,分别是枚举法和质因子法,并提供了相应的C语言代码实现。枚举法通过遍历区间内的每个整数计算其约数个数,而质因子法则通过分解素因子并计算约数个数来寻找答案。
摘要由CSDN通过智能技术生成

问题

  • 最多约数问题:正整数x的约数是能整除x的正整数。正整数x 的约数个数记为div(x)。例如,1,2,5,10 都是正整数10 的约数,且div(10)=4。设a 和b 是2 个正整数,a≤b,找出a和b之间约数个数最多的数x及其最多约数个数。

方法

  • 枚举法:枚举区间(a, b)内的所有整数,统计他们的约数个数,找出约数最多的整数。
  • 质因子法:取出区间(a,b)内的所有整数,判断是否能被以此增长的素数整除,若能被整除则该素数进行指数增长判断是否能被整除直至素数的指数倍大于该整数,记录指数大小,若此时已得到该整数,则利用公式正整数x的质因子分解为:x=p1^N1 × p2^N2 ×……pi^Ni,则div(x)=(N1+1)(N2+1)……(Ni+1)求得约数个数,否则继续验证素数。

代码

  • 枚举法
#include <stdio.h>
#include <stdlib.h> 
int main()
{      
  int i=1,j=0,k=1,a,b,max=0,m=0,count[100]={0};   	  
  scanf("%d %d",&a,&b);    
  for(;i<b-a;i++)//循环依次找出在(a,b)区间的整数   
  {  
     for(j=0,k=
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值