问题
- 最多约数问题:正整数x的约数是能整除x的正整数。正整数x 的约数个数记为div(x)。例如,1,2,5,10 都是正整数10 的约数,且div(10)=4。设a 和b 是2 个正整数,a≤b,找出a和b之间约数个数最多的数x及其最多约数个数。
方法
- 枚举法:枚举区间(a, b)内的所有整数,统计他们的约数个数,找出约数最多的整数。
- 质因子法:取出区间(a,b)内的所有整数,判断是否能被以此增长的素数整除,若能被整除则该素数进行指数增长判断是否能被整除直至素数的指数倍大于该整数,记录指数大小,若此时已得到该整数,则利用公式正整数x的质因子分解为:x=p1^N1 × p2^N2 ×……pi^Ni,则div(x)=(N1+1)(N2+1)……(Ni+1)求得约数个数,否则继续验证素数。
代码
#include <stdio.h>
#include <stdlib.h>
int main()
{
int i=1,j=0,k=1,a,b,max=0,m=0,count[100]={0};
scanf("%d %d",&a,&b);
for(;i<b-a;i++)//循环依次找出在(a,b)区间的整数
{
for(j=0,k=