快速排序
快速排序算法是对冒泡算法的一个优化。他的思想是先对数组进行分割,把大的元素数值放到一个临时数组里,把小的元素数值放到另一个临时数组里(这个分割的点可以是数组中的任意一个元素值,一般用第一个元素,即$array[0]),然后继续把这两个临时数组重复上面拆分,最后把小的数组元素和大的数组元素合并起来。这里用到了递归的思想
function kuaisu($arr){
$len = count($arr);
if($len <= 1){
return $arr;
}
$key = $arr[0];
$left_arr = array();
$right_arr = array();
for($i=1;$i<$len;$i++){ //不能从第0个开始
if($arr[$i] <=$key){
$left_arr[] =$arr[$i];
}else{
$right_arr[] =$arr[$i];
}
}
$left_arr =kuaisu($left_arr);
$right_arr =kuaisu($right_arr);
returnarray_merge($left_arr, array($key), $right_arr);
}
$array1=array(5,3,8,2,5,9,7,2,1,4,0);
$array1=kuaisu($array1);
print_r($array1);
其实快速排序之所以称之快速,就是因为,冒泡排序是每次对比只交换相邻的两个值的位置,这样每个值要移动到它最终的排序结果中所对应的位置,可能需要很多次位置的变化。但是快速排序可在一次划分中,就确定你选定的那个对比值在最终排序好的队列中的位置。
该算法是通过分治递归来实现的,其效率很大程度上取决于参考元素的选择,可以选择数组的中间元素,也可以随机得到三个元素,然后选择中间的那个元素(三数中值法)。
另外还有一点,就是当我们在分割时,如果分割出来的子序列的长度很小的话(小于5到20),通常递归的排序的效率就没有诸如插入排序或希尔排序那么快了。因此可以会去判断数组的长度,如果小于10的话,直接用插入排序,而不再递归调用这个快速排序
一群猴子排成一圈,按1,2,...,n依次编号。然后从第1只开始数,数到第m只,把它踢出圈,从它后面再开始数,再数到第m只,在把它踢出去...,如此不停的进行下去,直到最后只剩下一只猴子为止,那只猴子就叫做大王。要求编程模拟此过程,输入m、n,输出最后那个大王的编号。
这是著名的约瑟夫环问题,除了下边两种方法解决,还可以使用优先队列来解决问题. 猴子选大王和击鼓传花本质是一样的
<?php
// 方案一,使用php来模拟这个过程
function king($n,$m){
$mokey = range(1, $n);
$i = 0;
while (count($mokey)>1) {
$i += 1;
$head =array_shift($mokey);//一个个出列最前面的猴子
if ($i % $m !=0) {
#如果不是m的倍数,则把猴子返回尾部,否则就抛掉,也就是出列
array_push($mokey,$head);
}
}
// 剩下的最后一个就是大王了
return $mokey[0];
}
// 测试
echo king(10,7);
// 方案二,使用数学方法解决
function josephus($n,$m){
$r = 0;
for ($i=2; $i <= $n ; $i++) {
$r = ($r + $m) %$i;
}
return $r+1;
}
// 测试
print_r(josephus(10,7));
?>
http://book.51cto.com/art/201403/433942.htm
<?php
/**
* 顺序查找
* @param array $arr 数组
* @param $k 要查找的元素
* @return mixed 成功返回数组下标,失败返回-1
*/
function seq_sch($arr,$k){
for ($i=0,$n =count($arr); $i < $n; $i++) {
if ($arr[$i] ==$k) {
break;
}
}
if($i < $n){
return $i;
}else{
return -1;
}
}
/**
* 二分查找,要求数组已经排好顺序
* @param array $array 数组
* @param int $low 数组起始元素下标
* @param int $high 数组末尾元素下标
* @param $k 要查找的元素
* @return mixed 成功时返回数组下标,失败返回-1
*/
functionbin_sch($array,$low,$high,$k){
if ($low <= $high){
$mid =intval(($low + $high) / 2);
if ($array[$mid]== $k) {
return $mid;
} elseif ($k <$array[$mid]) {
returnbin_sch($array,$low,$mid - 1,$k);
} else{
returnbin_sch($array,$mid + 1,$high,$k);
}
}
return -1;
}
// 测试:顺序查找
$arr1 =array(9,15,34,76,25,5,47,55);
echo seq_sch($arr1,47);//结果为6
echo "<br/>";
// 测试:二分查找
$arr2 =array(5,9,15,25,34,47,55,76);
echobin_sch($arr2,0,7,47);//结果为5
?>