The Cartesian coordinate system is set in the sky. There you can see n stars, the i-th has coordinates (xi, yi), a maximum brightness c, equal for all stars, and an initial brightness si (0 ≤ si ≤ c).
Over time the stars twinkle. At moment 0 the i-th star has brightness si. Let at moment t some star has brightness x. Then at moment (t + 1) this star will have brightness x + 1, if x + 1 ≤ c, and 0, otherwise.
You want to look at the sky q times. In the i-th time you will look at the moment ti and you will see a rectangle with sides parallel to the coordinate axes, the lower left corner has coordinates (x1i, y1i) and the upper right — (x2i, y2i). For each view, you want to know the total brightness of the stars lying in the viewed rectangle.
A star lies in a rectangle if it lies on its border or lies strictly inside it.
The first line contains three integers n, q, c (1 ≤ n, q ≤ 105, 1 ≤ c ≤ 10) — the number of the stars, the number of the views and the maximum brightness of the stars.
The next n lines contain the stars description. The i-th from these lines contains three integers xi, yi, si (1 ≤ xi, yi ≤ 100, 0 ≤ si ≤ c ≤ 10) — the coordinates of i-th star and its initial brightness.
The next q lines contain the views description. The i-th from these lines contains five integers ti, x1i, y1i, x2i, y2i (0 ≤ ti ≤ 109, 1 ≤ x1i < x2i ≤ 100, 1 ≤ y1i < y2i ≤ 100) — the moment of the i-th view and the coordinates of the viewed rectangle.
For each view print the total brightness of the viewed stars.
2 3 3 1 1 1 3 2 0 2 1 1 2 2 0 2 1 4 5 5 1 1 5 5
3 0 3
3 4 5 1 1 2 2 3 0 3 3 1 0 1 1 100 100 1 2 2 4 4 2 2 1 4 7 1 50 50 51 51
3 3 5 0
Let's consider the first example.
At the first view, you can see only the first star. At moment 2 its brightness is 3, so the answer is 3.
At the second view, you can see only the second star. At moment 0 its brightness is 0, so the answer is 0.
At the third view, you can see both stars. At moment 5 brightness of the first is 2, and brightness of the second is 1, so the answer is 3.
思路:这题如果采用直接暴力法是肯定会TLE,所以应该才询问之前先统计一下各个位置同样亮度的星星有多少个,可以发现状态转移方程为dp[i][j][k]+=dp[i-1][j][k]+dp[i][j-1][k]-dp[i-1][j-1][k],然后就可以统计每种亮度的有多少个了。
代码:
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define ll long long
#define ma(a) memset(a,0,sizeof(a))
int dp[105][105][11];
int main()
{
int n,q,c;
while(~scanf("%d%d%d",&n,&q,&c))
{
ma(dp);
int i,j,k;
for(i=0;i<n;i++)
{
int x,y,z;
scanf("%d %d %d",&x,&y,&z);
dp[x][y][z]++;
}
for(i=1;i<=100;i++)
{
for(j=1;j<=100;j++)
{
for(k=0;k<=c;k++)
{
dp[i][j][k]+=dp[i-1][j][k]+dp[i][j-1][k]-dp[i-1][j-1][k];
}
}
}
while(q--)
{
ll t,sum=0;
int x1,x2,y1,y2;
cin>>t>>x1>>y1>>x2>>y2;
for(i=0;i<=c;i++)
{
int ans=(t+i)%(c+1);
sum+=(dp[x2][y2][i]+dp[x1-1][y1-1][i]-dp[x2][y1-1][i]-dp[x1-1][y2][i])*ans;
}
cout<<sum<<endl;
}
}
return 0;
}