2018中国大学生程序设计竞赛 - 网络选拔赛 1007 Neko's loop (线段树+循环节)

http://acm.hdu.edu.cn/showproblem.php?pid=6444

题意:

给出一个 n 个元素的环、可以任意选择起点、选完起点后、可以行走 m 步、每次前进 k 个单位、所走到的点将产生正或负贡献、问你一开始得准备多少才能使得初始资金加上在环上获取最大利益不少于给定的 s

思路:

把循环节扒出来,把m归约到循环节长度大小,然后跑长度小于某个值的最长子段和就可以了,

最长子段和我们可以用前缀和减去某一段前缀和就是子段和了,

当然我们选择可以选取道走m步,当然也可以不用选取m步,这样考虑哪种最优。

代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=1e4+10;
const int inf=0x7fffffff;
const int mod=1e9+7;
ll a[maxn];
ll sum[maxn];
ll b[maxn*2];
ll minn[maxn<<4];
ll gcd(ll a,ll b)
{
    if(b>a)swap(a,b);
    if(b==0)return a;
    return gcd(b,a%b);
}
void build(int l,int r,int x)
{
    if(l==r)
    {
        minn[x]=b[l];
        return ;

    }
    int mid=(l+r)/2;
    build(l,mid,x*2);
    build(mid+1,r,x*2+1);
    minn[x]=min(minn[x*2],minn[x*2+1]);
}
ll query(int l,int r,int L,int R,int x)
{
    if(l<=L&&r>=R)return minn[x];
    ll ans=1e18;
    int mid=(L+R)/2;
    if(l<=mid)ans=min(ans,query(l,r,L,mid,x*2));
    if(r>mid)ans=min(ans,query(l,r,mid+1,R,x*2+1));
    return ans;
}
int main()
{
    int T;
    scanf("%d",&T);
    for(int t=1;t<=T;t++)
    {
        ll n,s,m,k;
        scanf("%lld%lld%lld%lld",&n,&s,&m,&k);
        for(int i=0;i<n;i++)
        {
            scanf("%lld",&a[i]);
        }
        ll num=gcd(n,k);
        ll len=n/num;
        ll ans=0;
        for(int i=1;i<=num;i++)
        {
            int id=i-1;
            for(int j=1;j<=len;j++)
            {
                b[j]=b[j+len]=a[id];
                id=(id+k)%n;
            }
            for(int j=1;j<=(len<<1);j++)
            {
                b[j]+=b[j-1];
            }
            build(1,len<<1,1);
            ll maxx=0;
            if(m%len!=0)
            {
                for(int j=len+1;j<=(len<<1);j++)
                {
                    maxx=max(maxx,b[j]-query(j-(m%len),j,1,len<<1,1));
                }
            }
            ll ans2=0;
            if(m>=len&&b[len]>0)ans2=maxx+(m/len)*b[len];
            ll ans3=0;
            for(int j=len+1;j<=(len<<1);j++)
            {
                ans3=max(ans3,b[j]-query(j-len,j,1,len<<1,1));
            }
            if(b[len]>0)ans3+=((m-len)/len)*b[len];
            ans=max(ans,max(ans3,ans2));
        }
        printf("Case #%d: %lld\n",t,max(0LL,s-ans));
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值