[背包问题] 01背包、完全背包、整数找零

01背包问题N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

完全背包: 完全背包定义是有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的体积是c,价值是w。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。

多重背包: 有N种物品和一个重量为M的背包。第i种物品最多有n[i]件可用,每件重量是w[i],价值是p[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包重量,且价值总和最大。

  

01背包问题:

    这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。   

    用子问题定义状态:即f[i][v]表示前i件物品入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

    这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f [i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]   

    以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)

    先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f [0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]f[i-1] [v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]f[i-1][v -c[i]]的值呢?事实上,这要求在每次主循环中我们v=V..0的顺序推f[v],这样才能保证推f[v]f[v-c[i]]保存的是状态f[i -1][v-c[i]]的值

    第i件物品加入不会对F[i-1][]状态造成影响。

   ( 在本轮循环中,f[v]被更新之后,不能被依赖)。

    伪代码如下:

for i=1..N

for v=V..0

f[v]=max{f[v],f[v-c[i]]+w[i]};

    其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i- 1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。

 

 

 

 

 

完全背包问题:

      方法1: 每种物品可取V/C[i]种情况:  

      方法2: 每种物品拆成体积为C[i]×2k价值W[i]×2k的物品, 如某物品i体积为C[i]=1, 空间大小V=13,则物品i可拆成{1, 2, 4, 8, 5}这5种物品,然后进行0-1背包。

 

 

     方法3: 状态转移方程为:f[i][v]=max{f[i-1][v],  f[i][v-c[i]]+w[i]}

    伪代码:   

F[0][] ← {0}    
F[][0] ← {0}    
for i←1 to N    
    do for j←1 to V    
        F[i][j] ← F[i-1][j]    
        if(j >= C[i])    
            then F[i][j] ← max(F[i][j],F[i][j-C[i]]+ W[i])   // 第i个物品有可能被多次加入 
return F[N][V]  

     优化空间复杂度:

     完全背包则考虑的是第i物品的出现的问题,第i种物品一旦出现它势必应该对第i种物品还没出现的各状态造成影响。也就是说,原来没有第i种物品的情况下可能有一个最优解,现在第i种物品出现了,而它的加入有可能得到更优解,所以之前的状态需要进行改变,故需要正序。

     F[j] = max{ F[j],      F[j- C[i]] + w[i] },   即F[j] 要依赖于改变后(加入物品i)的状态。

     伪代码:

    

     F[] = {0}

     for i←1 to N

         do for k←C[i] to V

             F[k] ← max(F[k],F[k-C[i]]+W[i])

     return F[V]


 

 

 


 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值