推荐算法

摘 碗豆荚:....

我们发现一个很有意思的点是我们做这件事情的过程和Hulu做推荐系统的演变过程基本上是一样的。我们在最开始的时候,可能是一种基于item的协同过滤算法。随着我们对应用领域的了解,我们发现其实可以把一些应用的特征加进去,就加入了一些基于内容的推荐。这样的话,第二个版本就是一些基于item的协同过滤加上一个基于内容的推荐。做完这部分之后,我们发现这两种策略还是有一些bad case,主要体现就是它经常给出的是一些相似的应用,但不是一些相关的应用。举例来说,比如你下了一个愤怒的小鸟,他会给你推荐一个愤怒的小鸟2。但是相关的想法是,比如说你下了“知乎”,要可以给你推荐“点点”,或者给你推荐“豆瓣读书”这样的应用。我们为了让应用相关性更强就引进了一些topic model的算法。目前我们会对一些应用抽取topic,建立这些应用和topic之间的关联。我们目前就是做到第三步这个阶段;


摘 当当...

从技术算法角度,我们主要用到基于内容的(当当商品搜索也是我们team在负责)、协同过滤、关联规则等方法。在实际开发中,我们也遇到了cold start的问题,特别是我们希望促进百货类商品的销售(而百货又是弱势品类), 我们会基于商品的一些类别等属性进行推荐,这时的粒度不是基于product而是基于class。


http://www.javabloger.com/article/hadoop-dynamic-intelligent-recommendation-system.html

常用的推荐算法:

协同过滤推荐算法(Collaborative filtering—CF)在推荐系统中是一个非常的组件,其中包含2种  :
   a.基于用户的(User-based-CF):此种算法假定用户更倾向于那些和他具有相同爱好的人喜欢的节目,
   b.基于内容的(Item-based-CF):此种算法假定用户更倾向于以前对他有用的节目类别。此种算法被广泛应用,如Amazon、Netflix。
这种算法有两个优势:1.适用于用户数远多于节目数;2.能够很容易的根据用户行为历史数据推荐当前节目。





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值