AI哲学:(符号主义、连接主义), (行为主义,进化主义,群体主义), 以及以上几个途径都不可回避的( 学习主义)。
符号主义:三个核心问题是知识表示、搜索和推理。[启发式搜索,极大极小搜索,Alpah-Beta剪枝], [归结原理,不确定性推理]。 [缺点:仅依靠逻辑推理,没有形象思维,使用的是搜索求解的机制]。
连接主义:以及结构模拟为核心,自上而下,用学习来调整网络连接中的权值,基本核心问题是网络结构和学习算法。( 感知器,霍普菲尔德网络,自组织特征映射网络三大类型网络)。适合在模式识别这些不太适合采用人工符号主义的领域。
行为主义:对生物行为能力的模拟,强调与环境的交互中逐步提高能力,基本特点是“感知--行为”模式、现场式智能、渐进式智能。强化学习是环境与系统之间建立最优映射关系的学习算法。
进化主义:对群体的进化来解决人工智能中核心的搜索(优化)问题。
群体主义:对过个体之间的协作来解决单个个体不能解决的问题,或提高单个个体解决问题的效率。(多智能体,蚁群优化算法,粒子群优化算法)。
学习主义:不单独存在学习主义,其它5条途径都离不开学习主义,主要有:机械式学习,指导式、类比、归纳和解释学习,重点的归纳学习有(决策树、朴素贝叶斯分类器,贝叶斯信念网,划分聚类方法,层次聚类方法)。