fcm算法
分析:
1.算法中包含的参数:
a.模糊因子expo(expo>1)
b.最大迭代次数max_t
c.迭代终止条件ε
2.算法中包含的过程:
a.目标函数
b.欧式距离
c.隶属矩阵
d.聚类中心
e.迭代过程
还有 不要忘记!!初始化!!
3.实现代码过程中需要写成子函数的部分:
a.初始化函数initfcm() (主要实现隶属度矩阵的初始化)
b.一次聚类过程stepfcm()(包含目标函数,隶属矩阵的计算等等)
c.距离函数distfcm()
d.画图函数plotfcm()
代码实现:
· 函数定义–左边是输出参数,右边是函数名以及输入参数
主函数:
function[center, U, obj_fcn] = fcm_final(data,c,options)
% 输入:
% data 数据集 n行m列,n为样本数据数,m为数据的特征数
% c 聚类中心的个数
%options(1): 隶属度矩阵U的指数expo,>1(缺省值: 2.0)
%options(2): 最大迭代次数max_t(缺省值: 100)
%options(3): 隶属度最小变化量e,迭代终止条件(缺省值: 1e-5)
%options