自用Anaconda环境配置过程(RTX30系列)

本文详细介绍了如何配置基于RTX3050显卡的深度学习环境,包括使用conda创建虚拟环境,安装CUDA v11.0和cuDNN v11.0,以及PyTorch 1.7.1和torchvision 0.8.2。当官方源不稳定时,通过设置清华源并使用离线whl文件进行安装。最后,提供了激活、列出、退出和删除环境的命令,确保了深度学习开发的顺利进行。
摘要由CSDN通过智能技术生成

配置

rtx3050

cuda v11.0

cudnn 11.0

torch1.7.1+torchvision 0.8.2

虚拟环境配置

创建环境

conda create -n py37 python=3.7   //py37就是环境的名字

列出已经创建的环境

conda env list

进入环境

conda activate py37  //后面的py37就是进入的库

查看环境中的库

conda list

退出环境

deactivate

删除环境

conda env remove -n py37

设置清华源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes

配置过程

选用清华源

conda install pytorch torchvision torchaudio cudatoolkit=11.0

这里用conda安装的时候因为pytorch官网抽风 安装的是pytorch cpu版本

这里用自己离线的whl版本的pytorch 选用的版本是:(用 pip install 文件名)

torch-1.7.1+cu110-cp38-cp38-win_amd64.whl

torchaudio-0.7.2-cp38-none-win_amd64.whl

torchvision-0.8.2+cu110-cp38-cp38-win_amd64.whl

就可以基本完成深度学习的配置了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值