时隔多日,做完这题(花了两个半小时),心血来潮,来写一篇题解!!!
原题链接:P4180 [BJWC2010] 严格次小生成树 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
题目描述
小 C 最近学了很多最小生成树的算法,Prim 算法、Kruskal 算法、消圈算法等等。正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了。小 P 说,让小 C 求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是 E_MEM,严格次小生成树选择的边集是 E_SES,那么需要满足:(value(e)表示边 e 的权值) ∑e∈EMvalue(e)<∑e∈ESvalue(e)
这下小 C 蒙了,他找到了你,希望你帮他解决这个问题。
输入格式
第一行包含两个整数 NN 和 MM,表示无向图的点数与边数。
接下来 MM 行,每行 33 个数 x,y,zx,y,z 表示,点 xx 和点 yy 之间有一条边,边的权值为 zz。
输出格式
包含一行,仅一个数,表示严格次小生成树的边权和。
输入输出样例
输入 #1
5 6
1 2 1
1 3 2
2 4 3
3 5 4
3 4 3
4 5 6
输出 #1
11
对于 100% 的数据, N≤105,M≤3×105,边权 ∈[0,109],数据保证必定存在严格次小生成树。
避雷:看到这题,首先构建最小生成树,然后大部分人会想到倍增(因为数据范围较大,n^2就直接爆了),dfs初始化,然后用数组1存某节点向上跳能跳到的节点,和数组2跳过的路径中最大的边权,那么恭喜你,完美的跳入出题人的坑了,本题要求输出严格次小生成树的权值和。这个坑应该不难想出,思考一下就明白了。
正解:定义数组3,用来维护跳过的路径中边权次大值。
了解了,大致思路,废话不多说,直接上代码!!!
#include <bits/stdc++.h>
using namespace std;
struct edge {
int x, y, z, flag;
bool operator < (const edge &A) const {
return z < A.z;
}
} a[300001];
struct node {
int y, z;
};
vector<node> e[100001];
int n, m, tz, temp, pre[100001], fa[100001], dep[100001], f[100001][21], v[100001][21], l[100001][21];
long long w = 0, ans = 1LL << 60;
int find(int x) {
if (x == fa[x])
return x;
else
return fa[x] = find(fa[x]);
}
inline void dfs(int x) {
for (auto s : e[x]) {
int y = s.y, z = s.z;
if (y != pre[x]) {
pre[y] = x;
dep[y] = dep[x] + 1;
f[y][0] = x;
v[y][0] = z;
dfs(y);
}
}
}
int UP(int x, int d) {
int res = x;
for (int i = 0; (1 << i) <= d; i++)
if (((1 << i) & d)) {
if (v[res][i] < tz)
temp = max(temp, v[res][i]);
temp = max(temp, l[res][i]);
res = f[res][i];
}
return res;
}
int LCA(int x, int y) {
if (dep[x] < dep[y])
swap(x, y);
int rot = UP(x, dep[x] - dep[y]);
if (rot == y)
return rot;
for (int i = 20; i >= 0; i--)
if (f[rot][i] != f[y][i]) {
if (v[rot][i] < tz)
temp = max(temp, v[rot][i]);
else
temp = max(temp, l[rot][i]);
if (v[y][i] < tz)
temp = max(temp, v[y][i]);
else
temp = max(temp, l[y][i]);
rot = f[rot][i];
y = f[y][i];
}
if (v[rot][0] < tz)
temp = max(temp, v[rot][0]);
if (v[y][0] < tz)
temp = max(temp, v[y][0]);
return f[rot][0];
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; i++) {
int x, y, z;
scanf("%d%d%d", &a[i].x, &a[i].y, &a[i].z);
a[i].flag = 0;
}
sort(a + 1, a + m + 1);
int ops = 0;
for (int i = 1; i <= n; i++)
fa[i] = i;
for (int i = 1; i <= m; i++) {
int x = a[i].x, y = a[i].y, z = a[i].z;
int xx = find(x), yy = find(y);
if (xx != yy) {
a[i].flag = 1;
w += z;
fa[yy] = xx;
++ops;
e[x].push_back({y, z});
e[y].push_back({x, z});
}
if (ops == n - 1)
break;
}
dfs(1);
for (int i = 1; i <= 20; i++)
for (int j = 1; j <= n; j++) {
f[j][i] = f[f[j][i - 1]][i - 1];
v[j][i] = max(v[j][i - 1], v[f[j][i - 1]][i - 1]);
l[j][i] = max(l[j][i - 1], l[f[j][i - 1]][i - 1]);
if (v[j][i - 1] < v[j][i])
l[j][i] = max(l[j][i], v[j][i - 1]);
if (v[f[j][i - 1]][i - 1] < v[j][i])
l[j][i] = max(l[j][i], v[f[j][i - 1]][i - 1]);
}
for (int i = 1; i <= m; i++) {
if (a[i].flag)
continue;
temp = 0;
int x = a[i].x, y = a[i].y;
tz = a[i].z;
int d = LCA(x, y);
if (temp) {
// printf("%d %d %d\n", x, y, temp);
ans = min(ans, w - temp + tz);
// printf("%lld\n----\n", ans);
}
}
printf("%lld\n", ans);
return 0;
}
恭喜AC100,本题难度:省选/NOI-!!! 紫