[BJWC2010] 严格次小生成树

文章介绍了如何解决寻找无向图的严格次小生成树的问题,涉及到最小生成树算法如Prim和Kruskal,以及深度优先搜索DFS和最近公共祖先LCA在解题中的应用。通过构建并优化数据结构,找到严格次小生成树的边权和。
摘要由CSDN通过智能技术生成

时隔多日,做完这题(花了两个半小时),心血来潮,来写一篇题解!!!

原题链接:P4180 [BJWC2010] 严格次小生成树 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

题目描述

小 C 最近学了很多最小生成树的算法,Prim 算法、Kruskal 算法、消圈算法等等。正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了。小 P 说,让小 C 求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是 E_MEM,严格次小生成树选择的边集是 E_SES,那么需要满足:(value(e)表示边 e 的权值) ∑eEMvalue(e)<∑eESvalue(e)

这下小 C 蒙了,他找到了你,希望你帮他解决这个问题。

输入格式

第一行包含两个整数 NN 和 MM,表示无向图的点数与边数。

接下来 MM 行,每行 33 个数 x,y,zx,y,z 表示,点 xx 和点 yy 之间有一条边,边的权值为 zz

输出格式

包含一行,仅一个数,表示严格次小生成树的边权和。

输入输出样例

输入 #1

5 6
1 2 1 
1 3 2 
2 4 3 
3 5 4 
3 4 3 
4 5 6 

输出 #1

11

对于 100% 的数据, N≤105,M≤3×105,边权 ∈[0,109],数据保证必定存在严格次小生成树。

避雷:看到这题,首先构建最小生成树,然后大部分人会想到倍增(因为数据范围较大,n^2就直接爆了),dfs初始化,然后用数组1存某节点向上跳能跳到的节点,和数组2跳过的路径中最大的边权,那么恭喜你,完美的跳入出题人的坑了,本题要求输出严格次小生成树的权值和。这个坑应该不难想出,思考一下就明白了。

正解:定义数组3,用来维护跳过的路径中边权次大值。

了解了,大致思路,废话不多说,直接上代码!!!

#include <bits/stdc++.h>
using namespace std;
struct edge {
    int x, y, z, flag;
    bool operator < (const edge &A) const {
        return z < A.z;
    }
} a[300001];
struct node {
    int y, z;
};

vector<node> e[100001];
int n, m, tz, temp, pre[100001], fa[100001], dep[100001], f[100001][21], v[100001][21], l[100001][21];
long long w = 0, ans = 1LL << 60;

int find(int x) {
    if (x == fa[x])
        return x;
    else
        return fa[x] = find(fa[x]);
}

inline void dfs(int x) {
    for (auto s : e[x]) {
        int y = s.y, z = s.z;
        if (y != pre[x]) {
            pre[y] = x;
            dep[y] = dep[x] + 1;
            f[y][0] = x;
            v[y][0] = z;
            dfs(y);
        }
    }
}

int UP(int x, int d) {
    int res = x;
    for (int i = 0; (1 << i) <= d; i++)
        if (((1 << i) & d)) {
            if (v[res][i] < tz)
                temp = max(temp, v[res][i]);
            temp = max(temp, l[res][i]);
            res = f[res][i];
        }
    return res;
}

int LCA(int x, int y) {
    if (dep[x] < dep[y])
        swap(x, y);
    int rot = UP(x, dep[x] - dep[y]);
    if (rot == y)
        return rot;
    for (int i = 20; i >= 0; i--)
        if (f[rot][i] != f[y][i]) {
            if (v[rot][i] < tz)
                temp = max(temp, v[rot][i]);
            else
                temp = max(temp, l[rot][i]);
            if (v[y][i] < tz)
                temp = max(temp, v[y][i]);
            else
                temp = max(temp, l[y][i]);
            rot = f[rot][i];
            y = f[y][i];
        }
    if (v[rot][0] < tz)
        temp = max(temp, v[rot][0]);
    if (v[y][0] < tz)
        temp = max(temp, v[y][0]);
    return f[rot][0];
}

int main() {
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= m; i++) {
        int x, y, z;
        scanf("%d%d%d", &a[i].x, &a[i].y, &a[i].z);
        a[i].flag = 0;
    }
    sort(a + 1, a + m + 1);
    int ops = 0;
    for (int i = 1; i <= n; i++)
        fa[i] = i;
    for (int i = 1; i <= m; i++) {
        int x = a[i].x, y = a[i].y, z = a[i].z;
        int xx = find(x), yy = find(y);
        if (xx != yy) {
            a[i].flag = 1;
            w += z;
            fa[yy] = xx;
            ++ops;
            e[x].push_back({y, z});
            e[y].push_back({x, z});
        }
        if (ops == n - 1)
            break;
    }
    dfs(1);
    for (int i = 1; i <= 20; i++)
        for (int j = 1; j <= n; j++) {
            f[j][i] = f[f[j][i - 1]][i - 1];
            v[j][i] = max(v[j][i - 1], v[f[j][i - 1]][i - 1]);
            l[j][i] = max(l[j][i - 1], l[f[j][i - 1]][i - 1]);
            if (v[j][i - 1] < v[j][i])
                l[j][i] = max(l[j][i], v[j][i - 1]);
            if (v[f[j][i - 1]][i - 1] < v[j][i])
                l[j][i] = max(l[j][i], v[f[j][i - 1]][i - 1]);
        }
    for (int i = 1; i <= m; i++) {
        if (a[i].flag)
            continue;
        temp = 0;
        int x = a[i].x, y = a[i].y;
        tz = a[i].z;
        int d = LCA(x, y);
        if (temp) {
//            printf("%d %d %d\n", x, y, temp);
            ans = min(ans, w - temp + tz);
//            printf("%lld\n----\n", ans);
        }
    }
    printf("%lld\n", ans);
    
    return 0;
}

恭喜AC100,本题难度:省选/NOI-!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值