POJ 2031-Building a Space Station【最小生成树】

题目描述

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. 
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible. 

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively. 

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors. 

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect. 

Input

The input consists of multiple data sets. Each data set is given in the following format. 


x1 y1 z1 r1 
x2 y2 z2 r2 
... 
xn yn zn rn 

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100. 

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character. 

Each of x, y, z and r is positive and is less than 100.0. 

The end of the input is indicated by a line containing a zero. 

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001. 

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834

题意

题目很长,大家要学会找重点。

在宇宙(三维空间)中有n个空间站,每个空间站形成一个立体的球体,如果两个球体相接触或有重叠部分(R+r<=d,半径之和小于等于两点距离),则两个球体不需建立通道就可相互通讯,反之(R+r>d),则两个球体需要建立d-R-r长度的通道才能相互通讯,问任意两个空间站都可以相互通讯时,建立通道的最短长度为多少。

思路

这是一道最小生成树的题目,我们需要求出任意两点的距离D_a_b,和半径和比较,若R_a+R_b<=D_a_b,则a,b的边权值设为0,若R_a+R_b>D_a_b,则a,b的边权值设为D_a_b-R_a-R_b,再使用Kruskal(或Prim)求出最终最小生成树的权值。

写这一篇的原因是自己犯了很的错误,double输出用%f,不是%lf!!!!

代码

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;

const int Maxe = 10005;
const int Maxn = 105;
struct edge{
    int from,to;
    double val;
};
struct point{
    double x,y,z,r;
};

edge e[Maxe];
point p[Maxn];
int par[Maxn];
int n,cnt;

bool cmp(edge e1, edge e2)
{
    return e1.val<e2.val;
}
double getl(point p1, point p2)
{
    double tmp = sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)+(p1.z-p2.z)*(p1.z-p2.z));
    return tmp;
}
void Init()
{
    for(int i = 0; i < Maxn; i++)
        par[i] = i;
}
int Find(int x)
{
    if(x==par[x])
        return par[x];
    else
        return par[x] = Find(par[x]);
}
bool Union(int x, int y)
{
    x = Find(x);
    y = Find(y);
    if(x!=y)
    {
        par[y] = x;
        return true;
    }
    else
        return false;
}
double Kruskal()
{
    double res = 0;
    sort(e,e+cnt,cmp);
    Init();
    for(int i = 0; i < cnt; i++)
    {
        if(Union(e[i].from, e[i].to))
            res+=e[i].val;
    }
    return res;
}


int main()
{
    while(~scanf("%d", &n))
    {
        if(n==0)
            break;
        cnt = 0;
        for(int i = 0; i < n; i++)
            scanf("%lf %lf %lf %lf", &p[i].x, &p[i].y, &p[i].z, &p[i].r);
        for(int i = 0; i < n-1; i++)
        {
            for(int j = i+1; j < n; j++)
            {
                e[cnt].from = i;
                e[cnt].to = j;
                double l = getl(p[i],p[j])-p[i].r-p[j].r;
                if(l<0)
                    e[cnt].val = 0;
                else
                    e[cnt].val = l;
                cnt++;
            }
        }
        printf("%.3f\n", Kruskal());
    }
    return 0;
}

如有错误请指明~   ฅ●ω●ฅ

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值