学习LeetCode之组合两个表

SQL Left Join详解
本文深入解析SQL中的Left Join操作,通过实例演示如何在Person和Address两表中,即使右表数据缺失,也能完整展示左表信息,确保数据查询的全面性。

表1: Person         表2: Address
±------------±--------+    ±------------±--------+
| 列名 | 类型 |         | 列名 | 类型 |
±------------±--------+    ±------------±--------+
| PersonId | int |        | AddressId | int |
| FirstName | varchar |     | PersonId | int |
| LastName | varchar |     | City | varchar |
±------------±--------+     | State | varchar |
PersonId 是上表主键      ±------------±--------+
               AddressId 是上表主键
              
编写一个 SQL 查询,满足条件:无论 person 是否有地址信息,都需要基于上述两表提供 person 的以下信息:

FirstName, LastName, City, State

此题目考点就是left join 保留左表所有记录,右表不存在,字段为NULL

select p.FirstName , p.LastName , a.City , a.State from Person as p left join Address as a on p.PersonId = a.PersonId;

建表sql语句

Create table Person (PersonId int, FirstName varchar(255), LastName varchar(255))
Create table Address (AddressId int, PersonId int, City varchar(255), State varchar(255))
Truncate table Person
insert into Person (PersonId, LastName, FirstName) values (‘1’, ‘Wang’, ‘Allen’)
Truncate table Address
insert into Address (AddressId, PersonId, City, State) values (‘1’, ‘2’, ‘New York City’, ‘New York’)

内容概要:本文主要介绍了一项关于四足机器人轨迹优化四足机器人轨迹优化研究(Matlab代码实现)的研究,重点在于利用Matlab代码实现轨迹优化算法。通过对四足机器人运动学与动力学模型的建立,结合优化算法(如非线性模型预测控制、智能优化算法等),实现机器人在复杂地形下的稳定行走与高效路径规划。文中详细阐述了优化目标的设计,包括步态稳定性、能耗最小化、关节力矩平滑性等,并通过Matlab仿真验证了所提方法的有效性和鲁棒性。此外,文档还列举了多个相关研究方向和技术应用,展示了该领域与其他智能控制、路径规划及多传感器融合技术的紧密联系。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能机器人、运动控制、路径规划等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于四足机器人步态生成与轨迹优化算法的开发与仿真验证;②为复杂环境下移动机器人运动控制提供解决方案;③支持科研教学中对非线性优化、模型预测控制等高级控制策略的学习与实践。; 阅读建议:建议读者结合提供的Matlab代码进行实际操作,深入理解轨迹优化的数学建模过程与求解方法,同时可参考文中提到的协同路径规划、多传感器融合等扩展内容,拓展研究思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值