问题描述
何老板开了一家披萨店,有一天突然收到了n个客户的订单。
何老板所在的城市只有一条笔直的大街,我们可以将它想象成数轴,其中位置0是何老板的披萨店,第i个客户所在的位置为Pi,每个客户的位置都不同。如果何老板给第i个客户送披萨,客户会支付Ei-Ti块钱,其中Ti是何老板到达他家的时刻。当然,如果到得太晚,会使得Ei-Ti<0,这时,何老板可以选择不给他送餐,免得他反过来找何老板要钱。
何老板店里面只有一个送餐车(单位时间行驶单位长度的距离),因此只能往返送餐,如下图所示就是一条线路,图中第一行的数字是位置Pi,第二行是Ei。
你的任务是帮助何老板计算出最大的收益。
输入格式
第一行,一个整数n
第二行,n个空格间隔的整数,从左往右给出了每个客户的位置Pi,即P1,P2,……,Pn
第三行,n个空格间隔的整数,从左往右给出了每个客户对应的Ei,即E1,E2,……,En
输出格式
一行,一个整数,表示所求的最佳收益
样例输入 1
5
-6 -3 -1 2 5
27 10 2 5 20
样例输出 1
32
样例输入 2
6
1 2 4 7 11 14
3 6 2 5 18 10
样例输出 2
13
样例输入 3
11
-14 -13 -12 -11 -10 1 2 3 4 5 100
200 200 200 200 200 200 200 200 200 200 200
样例输出 3
1937
提示
1 ≤ n ≤ 100
-100,000 ≤ Pi ≤ 100,000 且Pi!=0
0< Ei ≤ 100,000
题解
这本来是老板的例题,但看不懂老板的代码,就自己写的。。。
除了可以不送披萨,其余的部分都和【Sue的小球 】非常相似。
但可以不送。。。这让费用提前计算变得非常麻烦。
这时,老板冒了出来,吼出记忆化搜索的口头禅:“状态信息量不足,加一维状态!”
所以——f[x][y][cnt][0/1]表示将第x至第y个人处理完(送完了,或者放弃这个披萨)剩下还送cnt个披萨的最大收益。
在讨论时只讨论最左边(最右边)的人送还是不送,这样费用提前计算就简单了(因为知道了会影响之后多少个披萨)。
最后输出max(f[1][n][0][0],f[1][n][0][1])即可。
显然有很多废状态,可用记忆化搜索。
具体见代码。
代码
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int Q=105;
struct dt{
int p,v;
}a[Q];
bool cmp(dt a,dt b)
{return a.p<b.p;}
int f[Q][Q][Q][2],st;
int g(int l,int r,int cnt,int yox)
{
if(l>st||r<st)return -999999999;
if(l==st&&r==st)return 0;
if(f[l][r][cnt][yox])return f[l][r][cnt][yox];
if(yox==0){
int o1=g(l+1,r,cnt,0)-cnt*(a[l+1].p-a[l].p);
int o2=g(l+1,r,cnt+1,0)-(cnt+1)*(a[l+1].p-a[l].p)+a[l].v;
int o3=g(l+1,r,cnt,1)-cnt*(a[r].p-a[l].p);
int o4=g(l+1,r,cnt+1,1)-(cnt+1)*(a[r].p-a[l].p)+a[l].v;
f[l][r][cnt][yox]=max(max(o1,o2),max(o3,o4));
}
else{
int o1=g(l,r-1,cnt,1)-cnt*(a[r].p-a[r-1].p);
int o2=g(l,r-1,cnt+1,1)-(cnt+1)*(a[r].p-a[r-1].p)+a[r].v;
int o3=g(l,r-1,cnt,0)-cnt*(a[r].p-a[l].p);
int o4=g(l,r-1,cnt+1,0)-(cnt+1)*(a[r].p-a[l].p)+a[r].v;
f[l][r][cnt][yox]=max(max(o1,o2),max(o3,o4));
}
return f[l][r][cnt][yox];
}
int main()
{
int i,n;
scanf("%d",&n);
++n;
for(i=1;i<n;i++)scanf("%d",&a[i].p);
for(i=1;i<n;i++)scanf("%d",&a[i].v);
a[n].p=0;
sort(a+1,a+n+1,cmp);
for(i=1;i<=n;i++)if(a[i].p==0){
st=i;break;
}
printf("%d",max(g(1,n,0,0),g(1,n,0,1))) ;
return 0;
}