动态规划专项intermediate:UVa 11600

这篇博客介绍了如何使用动态规划解决UVa 11600问题,该问题涉及计算数学期望。博主首先提到由于概率论知识不足导致理解困难,但通过做其他概率题逐渐明白解题思路。题目实则是‘水题’,由于n值可能达到30,博主使用map进行状态压缩。状态转移方程为:dp[i][st]=(n-1)/(n-s)+sum{cnt[k]*dp[k][st^(1<<k)]/(n-s)},其中k表示未访问节点,cnt[k]是连通分量包含的原节点数,s是已连节点的原节点总数。需要注意的是,样例输出要求是6位浮点数而非一位。
摘要由CSDN通过智能技术生成

一道求数学期望的dp,刚开始因为概率论没学好的缘故,连样例都看不懂……后来因为做了一道概率题,才明白了样例。做出来之后发现其实只是道水题……

先把连通分量都缩成一个点,然后就是简单的状压了。因为n到达30,数组开不下,所以我是用map实现状压的。

状态转移方程:dp[i][st]=(n-1)/(n-s)+sum{cnt[k]*dp[k][st^(1<<k)]/(n-s)}

k表示未访问过的节点,cnt[k]表示节点所代表的连通分量所含的原节点数,s表示当前已连的节点所含的原节点总数。

这题还有个trick,就是样例是错的,不是输出一位小数,而应该是6位浮点数。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
using namespace std;
vector<int> g[35];
int vis[35],cnt[35];
int n,m,e;
map<int,double> d[35];
void dfs(int u)
{
    vis[u]=1;
    cnt[e]++;
    for(int i=0;i<g[u].size();i++)
    {
        int v=g[u][i];
        if(!vis[v]) dfs(v);
    }
}
int bitcount(int x)
{
    int sum=0;
    for(int i=0;i<e;i++) if(x&(1<<i))
        sum+=cnt[i];
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值