深度学习平台:TensorFlow
目标:训练网络后想保存训练好的模型,以及在程序中读取以保存的训练好的模型。
简介
首先,保存和恢复都需要实例化一个 tf.train.Saver。
- saver = tf.train.Saver()
然后,训练循环中,定期调用 saver.save() 方法,向文件夹中写入包含当前模型中所有可训练变量的 checkpoint 文件。
- saver.save(sess, FLAGS.train_dir, global_step=step)
之后,就可以使用 saver.restore() 方法,重载模型的参数,继续训练或用于测试数据。
- saver.restore(sess, FLAGS.train_dir)
一次 saver.save() 后可以在文件夹中看到新增的四个文件,

实际上每调用一次保存操作会创建后3个数据文件并创建一个检查点(checkpoint)文件,简单理解就是权重等参数被保存到 .ckpt.data 文件中,以字典的形式;图和元数据被保存到 .ckpt.meta 文件中,可以被 tf.train.import_meta_graph 加载到当前默认的图。
示例
下面代码是简单的保存和读取模型:(不包括加载图数据)
import tensorflow as tf
import numpy as np
import os
#用numpy产生数据
x_data = np.li

本文介绍了如何在TensorFlow中使用tf.train.Saver来保存和恢复训练好的模型。通过实例化Saver,可以在训练过程中定期保存模型的权重。在需要时,可以使用restore方法恢复模型,继续训练或用于测试。保存操作会产生四个文件,包括权重和元数据。示例展示了基本的保存和读取模型的代码,强调了saver操作必须在建立会话后执行,并且保存路径需要正确指定。
最低0.47元/天 解锁文章
3573





